Attachment B19

Urban Forest Study – Waterloo Estate (South) – Land and Housing Corporation

waterloo estate - south urban forest study

24 March 2020

PROJECT

Waterloo South Renewal Waterloo, NSW 2017

CLIENT / PRINCIPAL

NSW Land and Housing Corporation

Level 1, 223 Liverpool Road Ashfield NSW 2131

DOCUMENT CONTROL

Date	Revision	Prepared by	Approved by	Status
10.2.20	DRAFT 1	Robert Smart	Robert Smart	DRAFT FOR LAHC REVIEW
5.3.20	DRAFT 2	Robert Smart	Robert Smart	FOR FINAL COORDINATION
24.3.20	1	Robert Smart	Robert Smart	AUTHORITY SUBMISSION

Report prepared by

Acknowledgements

This document has been prepared by Arterra Design Pty Ltd, using the expertise of our in-house consulting arborist (AQF Level 5), Robert Smart. Robert Smart is a member of the International Society of Arboriculture - Australian Chapter and also a Registered Consulting Arborist with Arboriculture Australia and a licenced Quantified Tree Risk Assessment practitioner. Robert Smart has 25 years experience in managing trees in complex development sites.

Disclaimer

This document is only to be used in relation to the Waterloo Estate and Waterloo South precinct and is only to be used for the purpose for which it was commissioned and in accordance with the specific brief and contract between Arterra Design and NSW Land and Housing Corporation.

Arterra Design accepts no liability or responsibility whatsoever for or in respect of any use of, or reliance upon, this report and its supporting material by any third party.

The following limitations apply to this report: -

- It is a strategy document: and is to provide guidance to the project urban designers and planners. The guidance is based on
 relatively brief site inspection of all trees, in some limited cases undertaken at some distance from the trees due to restrictions in
 access to parts of the site. It will be necessary to undertake further detailed site investigations once the exact nature and extent of
 the proposed site works are known for each construction project.
- 2. <u>Plans</u>: All plans are based on provided information and are illustrative for planning purposes only. They should only be used relating to tree issues and are not suitable for any other purpose.
- 3. <u>Further consultation on tree related issues</u>: We advise against any detailed designs based on this information being submitted for construction approval without the relevant tree related issues being reviewed by Arterra or another qualified arborist.
- 4. <u>Trees outside the precinct</u> are not specifically addressed as part of this report.
- 5. <u>Timing</u> : Written at a point in time with no consideration for changes to other projects outside the study boundary.

CONTENTS

i	EXE	ECUTIVE SUMMARY	iv
1.	1.0 I 1.1 N 1.2 N 1.3 F 1.4 F 1.5 N	RODUCTION Introduction Waterloo Estate Waterloo South Renewal Vision Purpose and Structure Why Are Trees So Important? Urban Forest Objectives	1 2 4 5 5 7
2.	2.0 2 2.1 E 2.2 F 2.3 T 2.4 S 2.5 F 2.6 S 2.7 C 2.8 E 2.9 A	DY REQUIREMENTS AND THE EXISTING URBAN FOREST ASSESSMENT Study Requirements Existing Tree Assessment Methodology Relevant Guiding Policies and Strategies Tree Retention Values of Existing Trees Site Context History and Age of Existing Tree Population Soils and Landform Climate and Microclimate Existing Tree Population and Statistics Arrangement and Relationship to Existing Structures Assessment of the Overall Existing Tree Population and its Composition	10 10 12 12 17 18 22 23 24 29 32
3.	3.0 \ 3.1 (3.2 F	ANNING FRAMEWORK AND INDICATIVE CONCEPT PROPOSAL Waterloo South Planning Proposal Green Star Community Rating and Initiatives Place Making Initiatives Canopy Cover - Benchmarking	33 33 36 37 38
4.	4.0 (4.1 (4.2 (4.3 (4.4 F 4.5 F 4.6 [PLEMENTATION PLAN AND URBAN FOREST STRATEGIES Overview Canopy Coverage Targets Green Links, Ecology and Open Space Urban Forest Resilience and Diversity Proposed Tree Species and Forest Composition Proposed New Tree Planting Strategies Designing For Trees Community Engagement and Education	40 40 42 42 42 42 46 47 49 52
5.	5.0 0 5.1 E 5.2 M 5.3 A 5.4 S 5.5 F 5.6 M	Description Sessment of existing tree impacts and removal Managing Tree Impacts and Proposed Tree Protection Measures Analysis of Key Urban Forest Performance Measures and Targets Suitability of Proposed and Suggested Tree Species Proposed DCP Provisions Relating to Urban Forest New Tree Planting References	55 55 56 62 66 66 67 69
6.	6.1 9 6.2 9 6.3 F	PENDICES Schedule of Existing Trees Schedule of Proposed Tree Species Plans of Proposed Trees to be Retained and Removed Typical Planting Details to be Adopted for the Project	70 70 72 73 87

i EXECUTIVE SUMMARY

This study has been prepared primarily to address the **Waterloo South Planning Proposal** requirements, analyse the existing tree population and identify the tree related opportunities and constraints associated with the proposed redevelopment of the wider Waterloo Estate. It is intended to provide NSW Land and Housing Corporation (LAHC) and its design consultants with information that clearly identifies and ranks the trees that are most appropriate to retain and protect, and outlines the broad methodology on how to potentially retain and protect them successfully. It also provides an outline and broad strategy to expand and enhance the urban forest with new tree planting, creating a diverse, sustainable, attractive and robust urban forest into the future.

Urban forests and urban trees are complex **natural** and **living** assets, often growing in close proximity to people, traffic and structures. Urban trees are often growing in harsh and unnatural environments and may be subject to damage or other influences that could lead to reduced vitality, shorter life expectancies and increased risk of tree failure. It is important that issues regarding the urban forest are stated and well understood early in the planning process and continue to be considered at the start of each detailed development stage.

The following table summaries how the City of Sydney's (CoS) study requirements have been addressed in this study.

CoS Planning Proposal – Summary of Study Requirements	Where Addressed in This Report
Study to be prepared by experienced AQF5 Arborist.	Acknowledgement and Author Qualification (page ii)
Preliminary arboricultural assessment and report to be prepared to guide urban design to minimise impacts to trees.	Section 2.0 and 6.0 Appendices of this report
Arboricultural impact assessment for the proposal to be undertaken.	Section 5.2 and 6.0 Appendices - 6.1 and 6.3
Retention of existing and provision of new trees is to consider relevant factors such as soil, space, species, wind and services.	Section 4.0 and 5.0 and the Public Domain Plan prepared by Turners/Turf
Demonstrate how the project addresses the CoS targets for Urban Forest such as size, age and species diversity and canopy coverage.	Section 5.0 and 6.0 Appendices.
Provide indicative tree and landscape planting strategy.	Over arching guidelines provided in Section 5.0 with specifics addressed within Public Domain Plan prepared by Turners/Turf
Demonstrate compliance with Council policies, strategies, and master plans.	Whole of report

Table i – CoS Study Requirements

Figure i.1 – Trees are one of the hardest working, multi-tasking assets within the city's green infrastructure. (Photo: Arterra)

The Existing Tree Population

Significant trees line many of the streets within the Estate. Trees located in the adjoining parks, together with those within the setback of the existing residential developments, currently make significant contributions to the overall urban forest of the precinct and the general Waterloo area.

- There are currently **939** trees within the Waterloo Estate (**551** trees are within the Waterloo South precinct).
- **239** (25%) of all trees are street trees.
- A further **173** trees are in close proximity to the streets. Therefore a total of **412** trees or **44%**, of all trees within the wider Waterloo Estate are on, or very close to, the streets and therefore may be affected by work that may happen in the streets.
- In particular, the majority of the 'High Value' trees are directly related to the streets, either street trees themselves or very close to the street edges.
- The 'overall' existing canopy coverage currently for the whole of the Waterloo Estate stands at **31%**. The existing canopy cover for the Waterloo South precinct is **28.9%**. The City of Sydney (CoS) canopy target is **27%**.
- Currently street trees provide **38%** canopy coverage to 'street areas'. The CoS target is **50%**.
- Although the Waterloo Estate now has very good canopy coverage, no historically significant trees were evident in the aerial images from 1943.
- The only significant trees evident in the 1943 aerial are located outside the precinct in the adjacent historical parks of Waterloo Park (Mt Carmel), and nearby Redfern Oval and Alexandria Park. This highlights that all the large and prominent Figs and Eucalyptus trees that are currently scattered throughout the study area are typically less than **45** years old.
- The current tree population is dominated by 4-5 main 'Families'. As expected, and as commonly found throughout many Australian cities, **Myrtaceae** dominates, at over 47% of the total population. The 'best practice' target is to have no more than 40% in any one 'Family'.
- **Tree Retention Values**. The individual number and the percentage of the total population of trees across the wider Waterloo Estate in the different retention value ratings are:
 - o High 141 (15%) (87 in South Precinct)
 - o Moderate **299** (32%) (**164** in South Precinct)
 - o Low **477** (51%) (**285** in South Precinct)
 - o Very Low / Remove 22 (2%) (15 in South Precinct)
- With regard to the 141 High Value trees, the majority are represented by the following species:
 - o Eucalyptus microcorys (Tallowood) (31%),
 - o Ficus microcarpa var. hillii (Hills Weeping Fig) (22%),
 - o *Corymbia maculata* (Spotted Gum) (8%)
 - o Eucalyptus botryoides (Bangalay) (5%)
 - o Eucalyptus saligna (Sydney Blue Gum) (5%) and
 - o Corymbia citriodora (Lemon Scented Gum) (5%).

The Urban Forest Opportunities & Requirements

There are significant opportunities to protect and enhance the existing urban forest. Some key opportunities of the Urban Forest Study for the Waterloo South Planning Proposal are outlined below:

- Aim to achieve a minimum **40**% overall **canopy coverage** within the Precinct. The redevelopment aims to exceed the CoS targets of 50% canopy cover to streets and exceed the 25% cover to Parks.
- **Retain and protect** the most significant existing trees around the site. Incorporate them as mature elements within the proposed public domain landscape.
- Recognise that **mature trees require space** around them, to protect their roots, so it will be necessary to minimise buildings, level changes, water quality ponds or service trenching though any areas retaining trees.
- Take an holistic view to new **street profile design**, to work trees in as a core design element, not as an afterthought. Provide appropriate space both above and below ground for trees to flourish. Consider the final sizes of root plates, trunks and canopy, services alignments and setback from the road edges.
- Incorporate new and existing trees into **appropriately sized verge gardens and lawn areas**. Provide adequate space for the trees trunks and structural roots to expand and allow better infiltration of air and water into the root zones.
- Design new pavements to direct surface water and runoff towards the existing and new trees to **passively irrigate** the trees in an ever-warming climate with unpredictable precipitation patterns.
- Utilise trees for **wind amelioration and shading**, understanding the most desirable forms, sizes and densities of tree canopy in given locations. Larger trees with dense canopies will typically be more important than smaller trees or trees with very open canopies.
- Incorporate a **range of species** into the final designs to increase resilience and population diversity. Consider species that currently prosper in slightly warmer climates to cater for climate change. Some deciduous trees will be required for better solar access during cooler months, particularly in the northern facing public spaces. Trees that transpire during hot conditions will help mitigate urban heat island effects through increased evaporative cooling. Good access to soil moisture and passive irrigation is critical for these trees.
- Specify a **diversity of tree sizes** with a balanced provision of small, medium, large and 'civic-scaled' trees.
- Incorporate trees and other plantings into upper levels of built forms, such as podiums and on roof tops to improve canopy coverage and increase connections to nature. This will be an important part of achieving a minimum of 20% canopy coverage to all semi-public and privately owned site areas.
- Explore opportunities for **community gardens and orchard-style** planting in semi-public open spaces such as roof terraces and podiums to provide urban food production and community engagement with trees.
- Consider **expanded verge widths and in-road planting** opportunities (blisters and medians) to move new trees away from services and building facades, allowing them to fully develop their canopies and ultimate sizes. This also better shades street pavements and helps achieve canopy coverage targets. This type of planting also calms traffic and improves the perception of the street.
- Utilise structurally supportive soil systems and vaulted tree pit designs to provide appropriate **soil volumes** for vigorous and healthy tree growth in the long term under pavements.
- Utilise appropriate **kerbside setbacks** to any new trees to allow the planting of trees further away from street kerbs and reduce the potential of future vehicle related tree damage.
- **Don't over plant** for instant or short term visual impacts allow time and space for trees to mature with full and symmetrical canopies where possible, considering the ultimate size of the species. Give trees space to access adequate resources rather than over-compete with each other. Trees will be easier to manage with better long-term health, and when the time comes for tree replacement, it will be easier and less likely to damage surrounding trees or leave excessively misshapen trees.
- Consider trees as valuable **multi-tasking assets** that provide shade, traffic calming, wind amelioration, environmental services, fauna connectivity, social, health, economic and aesthetic benefits. They make the streets more inviting and contribute to people wanting to use them for activities like socialising, walking and cycling.
- Utilise **best practices** for plant stock procurement, planting and handling techniques and tree establishment maintenance to ensure the full potentials of the urban forest are achieved and within acceptable resource limitations.

The following tables summarise the key elements of the proposal and how the various urban forest outcomes are largely being achieved within the **Waterloo South Precinct** proposal, particularly canopy cover.

Table ii – Tree Disposition

Tree Disposition	Totals	High Retention	Moderate Retention	Low Retention	Very Low Retention
Trees to be retained	130	45 (52%)	85 (52%)	0	0
Trees to be removed	421	42 (48%)	79 (48%)	285 (100%)	15 (100%)
Totals	551	87	164	285	15

Table iii – Urban Forest Targets

Urban Forest Consideration	Baseline Condition	CoS or Other Target	Proposed Waterloo South	Compliance/ Trend /Comment
<u>Canopy Coverage Overall</u> Street Parks Private	29% 38% 0% 25%	27% 50% 25% 25%	42.4% 59.8% 59.0% 20.0%	Targets all well exceeded except for private.
<u>Species Diversity</u> Family Genus Species	47% 19% 8%	40% 30% 10%	40-45% 20-30% <10%	Close to target likely Target likely to be achieved Target likely to be achieved
<u>Size Class</u> Civic Large Medium Small	10% 27% 44% 19%	10% 35% 45% 10%	6-8% 30-35% 40-45% 10-15%	Likely slightly less than target Target likely to be achieved Target likely to be achieved Likely slightly more than target
Ecological Diversity Endemic to Region Australian Native Exotic Weed / Non-desirable	18% 56% 23% 3%		20-25% 50-55% 20-25% -	Acceptable Balance Acceptable Balance Acceptable Balance Desired

In terms of urban trees, the most important thing to consider as part of the development planning is that all trees to be retained, and any new trees to be planted within the development, must be given the appropriate space to grow and thrive both below ground and above ground, in order to continue to develop and prosper for many years to come. We must design our cities for the trees, not expect the trees to conform to the city.

Figure i.3 – Existing trees are important assets. We must design to retain and utilise them and not expect them to conform to the cities needs. They are living and natural organisms and need to be supplied with the basics of life in order to prosper and provide the myriad of benefits we demand, need and desire. (Photo: Arterra)

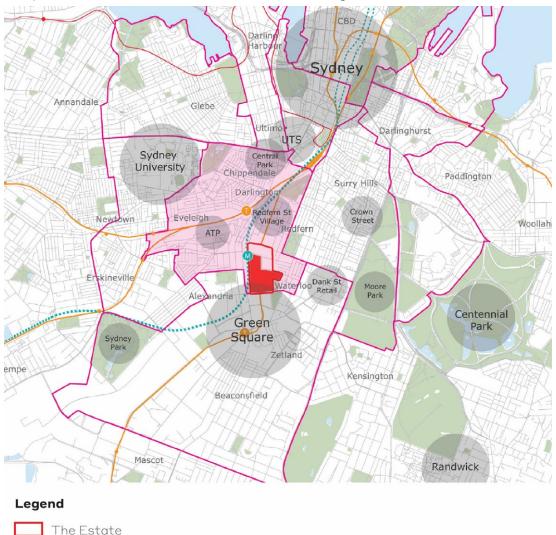
1. INTRODUCTION

1.0 Introduction

The Greater Sydney Region Plan and Eastern City District Plan seek to align growth with infrastructure, including transport, social and green infrastructure. With the catalyst of Waterloo Metro Station, there is an opportunity to deliver urban renewal to Waterloo Estate that will create great spaces and places for people to live, work and visit.

The proposed rezoning of Waterloo Estate is to be staged over the next 20 years to enable a coordinated renewal approach that minimises disruption for existing tenants and allows for the up-front delivery of key public domain elements such as public open space. Aligned to this staged approach, Waterloo Estate comprises three separate, but adjoining and inter-related stages:

- Waterloo South;
- Waterloo Central; and
- Waterloo North.


Waterloo South has been identified as the first stage for renewal. The lower number and density social housing dwellings spread over a relatively large area, makes Waterloo South ideal as a first sub-precinct, as new housing can be provided with the least disruption for existing tenants and early delivery of key public domain elements, such as public open space.

A planning proposal for Waterloo South is being led by NSW Land and Housing Corporation (LAHC). This will set out the strategic justification for the proposal and provide an assessment of the relevant strategic plans, state environmental planning policies, ministerial directions and the environmental, social and economic impacts of the proposed amendment. The outcome of this planning proposal will be a revised planning framework that will enable future development applications for the redevelopment of Waterloo South. The proposed planning framework that is subject of this planning proposal, includes:

- Amendments to the Sydney Local Environmental Plan 2012 This will include amendments to the zoning and development standards (i.e. maximum building heights and floor space ratio) applied to Waterloo South. Precinct-specific local provisions may also be included.
- **A Development Control Plan (DCP)** This will be a new part inserted into 'Section 5: Specific Areas' of the Sydney DCP 2012 and include detailed controls to inform future development of Waterloo South.
- An infrastructure framework in depth needs analysis of the infrastructure required to service the needs of the future community including open space, community facilities and servicing infrastructure.

1.1 Waterloo Estate

Waterloo Estate is located approximately 3.3km south-south-west of the Sydney CBD in the suburb of Waterloo (refer to **Figure 1.1**). It is located entirely within the City of Sydney local government area (LGA). Waterloo Estate is situated approximately 0.6km from Redfern train station and 0.5km from Australia Technology Park. The precinct adjoins the new Waterloo Metro Station, scheduled to open in 2024. The Waterloo Metro Quarter adjoins Waterloo Estate and includes the station and over station development, and was rezoned in 2019. Waterloo Estate comprises land bounded by Cope, Phillip, Pitt and McEvoy Street, including an additional area bounded by Wellington, Gibson, Kellick and Pitt Streets. It has an approximate gross site area of 18.98 hectares (14.4 hectares excluding roads). Waterloo Estate currently comprises 2,012 social housing dwellings owned by LAHC, 125 private dwellings, a small group of shops and community uses on the corner of Wellington and George Streets, and commercial properties on the south-east corner of Cope and Wellington Streets.

A map of Waterloo Estate and relevant boundaries is illustrated in Figure 1.2.

Figure 1.1 - Location plan of Waterloo Estate and Waterloo South [Source: Turner Studio]

1.2 Waterloo South

Waterloo South

Waterloo South includes land bounded by Cope, Raglan, George, Wellington, Gibson, Kellick, Pitt and McEvoy Streets, and has an approximate gross site area of 12.32 hectares (approximately 65% of the total Estate).

Waterloo South currently comprises 749 social housing dwellings owned by LAHC, 125 private dwellings, and commercial properties on the south-east corner of Cope and Wellington Streets. Existing social housing within Waterloo South is predominantly walk up flat buildings constructed in the 1950s and '60s, and mid-rise residential

flat buildings (Drysdale, Dobell & 76 Wellington Street) constructed in the 1980s. Listed Heritage Items within Waterloo South include the Duke of Wellington Hotel, Electricity Substation 174 on the corner of George and McEvoy Streets, the terrace houses at 229-231 Cope Street and the Former Waterloo Pre-School at 225-227 Cope Street. The State Heritage listed 'Potts Hill to Waterloo Pressure Tunnel and Shafts' passes underneath the precinct.

A map of Waterloo South and relevant boundaries is illustrated in Figure 1.2.

Figure 1.2 - Waterloo Precinct [Source: Ethos Urban]

1.3 **Renewal Vision**

The transition of Waterloo Estate will occur over a 20-year timeframe, replacing and providing fit for purpose social (affordable rental) housing as well as private housing to create a new integrated and inclusive mixedtenure community. This aligns with Future Directions for Social Housing in NSW – the NSW Government's vision for social housing. It also aligns with LAHC's Communities Plus program, which is tasked with achieving three key objectives:

- 1. Provide more social housing
- 2. Provide a better social housing experience
- 3. Provide more opportunities and support for social housing tenants

The following is LAHC's Redevelopment Vision for Waterloo Estate, which was derived from extensive consultation and technical studies:

[Source: Let's Talk Waterloo: Waterloo Redevelopment (Elton Consulting, 2019)]

Culture and Heritage

- Recognise and celebrate the significance of Waterloo's Aboriginal history and heritage across the built and natural environments.
- Make Waterloo an affordable place for more Aboriginal people to live and work.
- Foster connection to culture by supporting authentic storytelling and recognition of artistic, cultural and sporting achievements.

Communal and Open Space

- Create high quality, accessible and safe open spaces that connect people to nature and cater to different needs, purposes and age groups.
- Create open spaces that bring people together and contribute to community cohesion and wellbeing.

Movement and Connectivity

- Make public transport, walking and cycling the preferred choices with accessible, reliable and safe connections and amenities.
- Make Waterloo a desired destination with the new Waterloo Station at the heart of the Precinct's transport network - serving as the gateway to a welcoming, safe and active community.

Character of Waterloo

- Strengthen the diversity, inclusiveness and community spirit of Waterloo.
- Reflect the current character of Waterloo in the new built environment by mixing old and new.

Local Employment Opportunities

Encourage a broad mix of businesses and social enterprise in the area that provides choice for residents and creates local job opportunities.

Community Services, Including Support For Those Who Are Vulnerable

GOD	
$((\bigcirc))$	

- Ensure that social and human services support an increased population and meet the diverse needs of the community, including the most vulnerable residents.
- Provide flexible communal spaces to support cultural events, festivals and activities that
- strengthen community spirit.

Accessible Services

JU	J	7	
	Γ		

Deliver improved and affordable services that support the everyday needs of the community, such as health and wellbeing, grocery and retail options.

Design Excellence

	0000	
0	пп	0
Т		т

- Ensure architectural design excellence so that buildings and surrounds reflect community diversity, are environmentally sustainable and people friendly - contributing to lively, attractive and safe neighbourhoods.
- Recognise and celebrate Waterloo's history and culture in the built environment through artistic and creative expression.
- Create an integrated, inclusive community where existing residents and newcomers feel welcome, through a thoughtfully designed mix of private, social (affordable rental) housing.

1.4 Purpose and Structure

This report relates to the Waterloo South planning proposal. While it provides comprehensive baseline investigations for Waterloo Estate, it only assesses the proposed planning framework amendments and Indicative Concept Proposal for Waterloo South. The purpose of this report is to address the relevant Study Requirements outlined by the CoS and detailed in Section 2 (Table 1). In summary it is to:

- Provide an urban forest study and guiding strategy consistent with the overall objectives sought for the Precinct and that supports the Waterloo South Precinct Proposals.
- Provide a robust, defensible evidence base to inform the Precinct proposals.
- Promote solutions to protect and enhance the urban forest that can be readily implemented and supported by key stakeholders.

1.5 Why Are Trees So Important?

There is a considerable and rapidly expanding body of research that exists on the benefits that urban trees bring. The 'urban forest' consists of all trees and vegetation located within a defined urban area, irrespective of the tree species, origin (native, exotic), location (street, park, garden, school) or ownership (public, private, institutional).

The urban forest, often most easily measured as a canopy cover percentage of the total land area, is recognized as a primary component of the urban ecosystem (LGA NSW 2003). It is one component of a complex built environment that includes roads, car parks, footpaths, underground services, buildings and other urban structures (North Sydney 2011).

In practice, the 'urban forest' incorporates and encompasses all vegetation within streets, parks, wetlands, balconies, facades and roofs. This document, however, primarily addresses the existing and proposed tree stratum. The vegetation that would not be considered 'trees', such as roof gardens, shrubs and groundcovers, and 'rain garden' planting is more specifically dealt with in numerous other technical studies being prepared for the precinct such as the urban and landscape designs, the ecological studies and the sustainability reports.

Trees in cities are a major and visible component of the natural resources upon which the City relies. They provide a substantial contribution to the "sense of place", and character of an area. They can have historical significance and provide numerous environmental and psychological benefits to visitors and residents. They can also provide important way-finding and 'landmark' statements. Trees of civic scale or with distinctive forms can be important markers in the landscape and help to demarcate the entry or gateways to an area or help to define important areas, improving way-finding and urban legibility.

Examples of these benefits, both direct and indirect include:

- reducing the urban heat island effect and moderation of other weather extremes and winds
- providing cooling and shading to pedestrians and buildings
- lowering energy use (due to the above)
- increasing longevity of pavements and road surfaces due to shading
- shading of parked cars and reduction in hydrocarbon emissions
- storage of carbon dioxide (CO²⁾
- interception and storage of rainwater and stormwater via leaves and roots
- filtering of particulate matter and polluting gases
- ameliorating wind
- production of atmospheric oxygen and uptake of carbon dioxide
- provision of habitat for native fauna, birds and insects
- general human health, calming and wellbeing.

Few things can compare with the visual impact and seasonal interest a tree provides. They foster community cohesion, creating a sense of place and local landmarks. Very importantly, trees can have surprising and profound effects on the psychological wellbeing of nearby residents, particularly in urban areas (Ferrini et al, 2017).

Trees remain one of the most cost effective measures of drawing excess CO² from the atmosphere. They also improve air quality by removing and storing a surprising amount of harmful pollutants such as sulfur dioxide, nitrogen oxides, particulate matter, and heavy metals such as cadmium, nickel and lead.

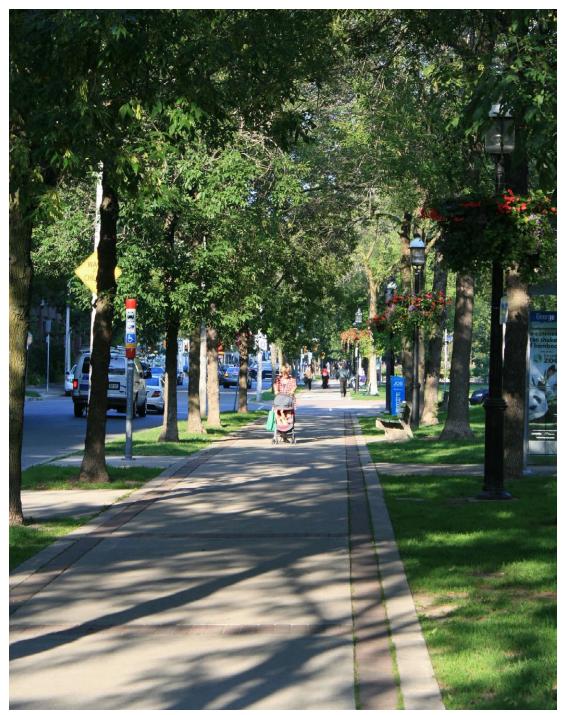


Figure 1.3 – Trees are good. Trees provide the most significant and tangible contribution to an urban area's ecosystem services and the comfort and enjoyment of the public realm. A well planned street with excellent tree cover promotes walking and social interaction and contributes to many psychological and social benefits. (Photo-Arterra)

They have also been shown to help reduce incidences of asthma and stress-related hypertension. Studies have shown that trees and other green spaces can have a therapeutic effect for children suffering ADHD, improving both attention levels and social function. Current studies in Ontario, Canada suggest that people who live in neighbourhoods with a higher density of trees on their streets report significantly higher health perception and considerably fewer cardio-metabolic conditions, even when allowing for socio-economic factors and demographic factors (Carpani, 2016).

Trees have also been shown to provide direct economic benefits to a region. The attractiveness of an environment is an important factor in attracting inward investment. Values of properties in tree-lined areas may be up to 6% greater than in similar areas without trees (Wolf, 1998). Rental rates are up to 7% higher for commercial office properties having a quality landscape. Furthermore, consumers report being willing to spend up to 12% more in central business districts having large trees (Wolf 2009).

Trees also have costs associated with planting and maintaining them and many challenges involved in growing healthy trees in otherwise complex and often unnatural, urban environments. Although the urban forest can most definitely be considered an asset, if not properly planned, cared for and managed, it can also become a liability.

The Waterloo South Precinct Urban Forest Strategy (UFS) provides a strategic and long-term vision for the development and management of the Waterloo urban forest. Through careful planning and implementation of the UFS it is hoped the urban forest will mature gracefully and provide a long lasting legacy for future generations and make Waterloo a memorable and beautiful place in which to live, work and play.

Figure 1.4 - Trees bring many important benefits, as well as beauty and delight. They can also play an important part of place making and community engagement, being the focus or framework for art installations and lighting displays. (Photo: Arterra)

1.6 Urban Forest Objectives

Urban forest management focuses on the 'forest' or the broader population of trees and can be described as "the science and art of managing trees, forests and natural ecosystems in and around urban communities to maximise the physiological, sociological, economic and aesthetic benefits that trees provide society" (Schwab 2008).

The purpose of the Waterloo South Precinct Urban Forest Study (UFS) is to provide **strategic directions and guidelines** for the retention, enhancement, development and management of a resilient, healthy and diverse urban forest. The urban forest should be seen as an important asset that provides environmental, social, aesthetic and economic benefits and contributes to the health and well being of Waterloo, its residents and the broader community of Sydney.

The focus of the UFS is to protect the existing tree and canopy cover, and through additional tree planting, ultimately meet or exceed the City of Sydney targets for canopy cover, species diversity, age diversity and size diversity. Trees and the wider urban forest make a significant contribution to the overarching objectives of creating a sustainable and liveable community. Trees will also contribute to the achievement of many other critical outcomes such as biodiversity, wind amelioration, shading and urban heat island reduction, stormwater and pollution uptake and

Figure 1.5 – The existing trees that were planted some 30-40 years ago have served the precinct well and often create a perception of a extensively planted, green area. They represent a large mix of species, sizes and ages and provide a good framework for a sustainable urban forest going forward.

amelioration, reduced energy consumption, improved pavement life expectancy, and improved social cohesion and resident well-being.

This plan begins with the detailed assessment of the existing urban forest of the wider Waterloo Estate. The assessment provides insights as to the current composition, conditions, opportunities and constraints posed by the existing urban forest and the current urban landscape, both of which have evolved primarily since the construction of the Estate during the 1960s, 70s and 80s.

Having quantified the current status of the urban forest, the UFS further seeks to answer two key questions:

- What do we want from the future Urban Forest What is the future vision?
- What needs to be done in the planning and construction stages to make this vision a reality?

The **key objectives** for the urban forest of the Waterloo Estate is therefore to:

- Provide a resilient, healthy and diverse urban forest that is recognised and valued for its environmental, social, aesthetic and economic benefits and for its contribution to the health and well-being of the Waterloo community.
- Provide an integrated and systematic long-term strategy that values trees as critical infrastructure, with equal priority to other infrastructure such as roads and services, while minimising the potential negative and longer term costs associated with trees in a dense urban environment.
- Retain and protect the extensive existing tree canopy, that currently characterises much of the Waterloo Estate.
- Educate the community and promote the benefits of the urban forest.
- Make appropriate and targeted provisions for future tree planting via thoughtful and best-practice design of the streetscapes, open spaces and buildings and provide significant natural landscape elements at both the human and civic scales.

Figure 1.6 – Trees are valuable additions to high density urban areas for many reasons. Research has consistently shown that people will be attracted towards, linger longer and spend more money in attractive, tree lined streets compared to barren or poorly planted areas. (Photo: Arterra)

2. STUDY REQUIREMENTS AND THE EXISTING URBAN FOREST ASSESSMENT

2.0 Study Requirements

This report addresses the Urban Forest Study requirements identified as part of the CoS planning requirements for the Precinct; that is, to identify the existing tree species, their location, size, condition, retention value and life expectancy. It provides guidance on the composition and history of the trees and the potential constraints and opportunities afforded by the existing trees within the study area. Refer to Table 1 on the following page.

This report discusses the trees that should, or could, be considered for retention as part of the new development and provides guidelines for the required Tree Protection Zones and other measures to enable the trees to continue to grow and thrive, where they are retained. The schedule of existing trees at Appendix 6.1 of this report provides the numerical Tree Protection radius for each tree. This should be consulted as more detailed development footprints and building envelopes and landscaping details crystallise beyond the current rezoning phase of the process.

The urban forest is a complex natural asset and a major component of the green infrastructure and the natural resources upon which the City relies. As such, detailed planning and collaboration are required by all professionals in key allied fields (such as arboriculture, architecture, landscape architecture, planning, engineering and heritage) to deliver an urban forest that will provide the community with the required environmental, social and economic benefits.

2.1 Existing Tree Assessment Methodology

An assessment of all the existing trees was carried out via a brief visual inspection from the ground only in May 2017. The trees were photographed and all were given a unique identification number. This was aligned with the CoS tree asset ID number, where one had already been allocated. (This included most of the street and public park trees). Other private property trees were allocated a unique sequential number by Arterra. The tree locations were based on the issued topographical survey plans. Most of these surveys dated from circa 2011, so Arterra verified the existence of the trees (some trees had been removed or added since the survey) and plotted them onto the accompanying drawings for referencing, co-ordination and identification.

Tree trunk diameters, tree heights and canopy spreads were estimated in the field and cross-referenced to survey information and current aerial photography. Canopy position and extents have been adjusted, where necessary, on the plans to more accurately portray the canopy extent and positions.

Due to difficulty in gaining access to certain private areas, some trees were only assessed from a distance, or from one side only. Arterra can, therefore, not guarantee that all significant defects or major issues were assessed and identified within all trees.

Reference No.	CoS Planning Proposal – Study Requirement	Where Addressed in This Report
1	This study requires a Project Arborist qualified in arboriculture to Australian Qualifications Framework (AQF) level 5 or above and have at least 5 years demonstrated experience in managing trees within complex development sites.	Acknowledgement and Author Qualification (page ii)
2	Provide a preliminary arboricultural report that identifies tree location, condition, quality, life expectancy and indicative Tree Protection Zones to enable the urban design to minimise impacts to trees.	Section 2.0 and 6.0 Appendices of this report
3	Undertake an arboricultural impact assessment for the proposal outlining the trees to be removed or retained and the possible impacts on the trees to be retained including allowing for future construction methodology.	Section 5.2 and 6.0 Appendices - 6.1 and 6.3
4	The plan for the retention of existing and provision of new trees is to consider: a) the capacity of the public domain and urban design approach to protect existing trees and allow for the growth of new trees; b) species selection that maximises solar access during winter; c) the provision of sufficient soil volumes and quality (including within the private domain) provide for long term tree health; d) canopy design concepts that consider expanded verges and central verges (through setbacks, reduced carriageway or widened reservation) to increase planting, incorporation of landmark large scale trees in key locations and street gardens and low plantings to improve streetscape amenity; and e) coordinate outcomes of the Public Domain Design, Urban Design, Utilities (ensure overground utilities are undergrounded), Wind (ensuring that trees are not expected to be the wind mitigation device) and transport parts of this study.	Section 4.0 and 5.0 and the Public Domain Plan prepared by Turners/Turf
5	Demonstrate how the project addresses the CoS Urban Forest Strategy, in particular the following site specific targets: a) minimum canopy cover of 50% to streets, 25% to parks and 25% to private property; b) minimum species diversity targets of 40% family, 30% genus, and 10% species; and c) minimum distribution of tree heights of 10% small trees (3-5m), 45% medium trees (5-10m), 35% large trees (10-20m) and 10% extra-large trees (20m+). d) Consult closely with CoS	Section 5.0 and 6.0 Appendices. Note: Consultation has also occurred with the CoS Urban Forest Manager throughout the report preparation.
6	Provide an indicative tree and landscape planting strategy across the site, accounting for biodiversity and habitat considerations that includes: a) a tree sensitive public domain and that protects existing trees, and allows for the growth of new trees; b) species selection that maximises solar access during winter; and c) sufficient soil volumes and quality are provided for long term tree health.	Overarching guidelines provided in Section 5.0 with specifics addressed within Public Domain Plan prepared by Turners/Turf
7	Demonstrate that Council policies, strategies, and master plans are complied with, including, Greening Sydney, Tree Management Controls: SLEP; SDCP; Urban Forest Strategy; Tree Management Policy; Street Tree Master Plan; Urban Ecology Strategic Action Plan and Landscape Code and NSW OEH - Urban Green Cover in NSW.	Whole of report

2.2 Relevant Guiding Policies and Strategies

The Waterloo UFS has been considered in relation to many other existing and draft Council and other authority policies that will influence the future pattern and development of our streets and tree planting. This has included documents such as:

- NSW OEH Urban Green Cover in NSW 2012 Technical guidelines
- NSW Government Architects Office -The Green Grid-creating Sydney's open space network
- Transport NSW Cycling Future 2013, Walking Future 2013
- CoS -Streets Code
- CoS DCP 2012
- CoS -Public Domain Manual
- CoS -Landscape Code 2016
- CoS Greening Sydney Plan 2012
- CoS Urban Forest Strategy 2013
- CoS -Tree Management Policy 2013
- CoS -Street Tree Master Plan 2015
- CoS -Environmental Action 2016-2021 Strategy and Action Plan (Draft endorsed March 2017)

Some other documents considered include:

- Low Carbon Living CRC Guide to Urban Cooling Strategies (July 2017)
- NSW Government Architects Office (Draft) Greener Places (Oct 2017)
- National Green Infrastructure Network-Urban Ecology : Theory Policy and Practice in NSW (May 2017)
- City of Melbourne/Victorian Dept. Environment, Land, Water and Planning How to grow an urban forest
- The Nature Conservancy Washington Outside our Doors (2016)
- Trees and Design Action Group No trees, no future : trees in the urban realm (Nov 2008)

2.3 Tree Retention Values of Existing Trees

The retention value of existing trees throughout the study area was assessed using a combination of techniques commonly used and recognised in the arboricultural industry. All the trees have been given one of the following retention values:

- High
- Moderate
- Low
- Very Low / Remove

The location of the trees and their relative retention values was plotted on to survey drawings. Refer to Figure 2.18 for a graphical representation of the trees and their retention value for the wider Waterloo Estate. Explanation of the criteria used to determine the 'Tree Retention Values' are summarised in the following pages.

"High" Retention Value – these are trees that are typically large and visually prominent, historically or environmentally important, in good or very good condition. They may also be part of an important group of trees. They should represent a serious physical constraint to the development and their removal avoided where possible and feasible. The following figures illustrate some examples of 'high' value trees.

Figure 2.1 – Example of a significant 'High' value tree (Ficus microcarpa var. hillii a Hills Weeping Fig (T297) planted adjacent to Wellington St) (Photo: Arterra)

Figure 2.2 – Example of a significant 'High' value tree (Eucalyptus microcorys a Tallowood (T15097) planted on Wellington St) (Photo: Arterra)

"Moderate" Retention Value – these are trees that are in good to reasonable condition and should be retained where possible and feasible to do so. They may also be lesser trees, but part of a relatively good grouping of trees and therefore warrant retention based on the overall group's value.

The trees ranked as moderate as part of this assessment covered a broad range of trees and tree forms. Most were mature trees with average forms and vigour or some minor defects. Many were also smaller trees or semi-mature trees with very good forms, vigour and future potential to actively contribute to the urban forest, as shown in the examples below.

Figure 2.3 – Example of a 'Moderate' value tree (Cupaniopsis anacardioides – Tuckeroo (T8524) on George St) (Photo: Arterra)

Figure 2.4 – Example of a 'Moderate' value tree (a semi-mature Corymbia eximia – Yellow Bloodwood growing well and recently planted on Cope St (T6846)). This tree is in keeping with the desired species as set out in the CoS Street Tree Master Plan. (Photo: Arterra)

Waterloo South Precinct Planning Proposal | Urban Forest Study - 24/3/2020

"Low" Retention Value – these are trees that are of poor condition or have structural defects, are particularly small growing or commonplace trees, are not historically, environmentally or socially significant and should not be considered as a constraint to the future development. They could be retained, but only if they are not likely to be impacted by, or constrain potentially desirable, development outcomes.

The trees ranked as low as part of this assessment were either considered young and replaceable, or were suppressed due to their close proximity of other trees or were in poor or declining condition, as shown in the examples below.

Figure 2.5 – Example of a 'Low' value tree (Eucalyptus bicostata – Southern Blue Gum (T963)) (Photo: Arterra)

Figure 2.6 – Example of a 'Low' value tree (a small and recently planted Jacaranda mimosifolia- (T32577) that could be easily replaced if needed) (Photo: Arterra)

Figure 2.7 – Example of a 'Low' value tree (a very suppressed Tristaniopsis laurina – Water Gum (T15088) on Wellington St growing under the much larger and more significant fig trees) (Photo: Arterra)

Waterloo South Precinct Planning Proposal | Urban Forest Study - 24/3/2020

Very Low / **No Retention Value** – these are trees that are in very poor health, or poor form, or have serious structural defects, are considered weeds or a combination of these, and therefore should be considered for removal regardless of any future development.

Figure 2.8 – Example of a 'Very Low' value tree (a very poorly formed Robinia pseudoacacia 'Frisia' – Black Locust (T12446) on Pitt St growing beneath power lines. (Photo: Arterra)

Figure 2.9 – Example of a 'Very Low' value tree - one of the many self-sown Celtis sinensis – Chinese Hackberry (T461) growing within the private yards and car parking areas of the existing units, many are in very inappropriate locations and should be removed. (Photo: Arterra)

2.4 Site Context

The Estate is currently a highly urbanised, primarily social housing estate, developed between the 1950s and 1980s. It is characterised by a variety of medium to high density residential developments interspersed with treelined streets, parks and public open spaces.

Significant trees line many of the streets within the Estate. Trees located in the adjoining parks together with those within the setbacks of the residential developments, currently make significant contributions to the overall urban forest of the precinct and the wider urban area.

The Estate is surrounded by several important open spaces within a 200m radius. Redfern Oval is located to the north-east, Mt Carmel/Waterloo Park is located directly to the east/ south-east, and Alexandria Park is located two blocks to the west. Tobruk Memorial Reserve is a small park located near the Waterloo Estate at the eastern side, fronting Elizabeth Street.

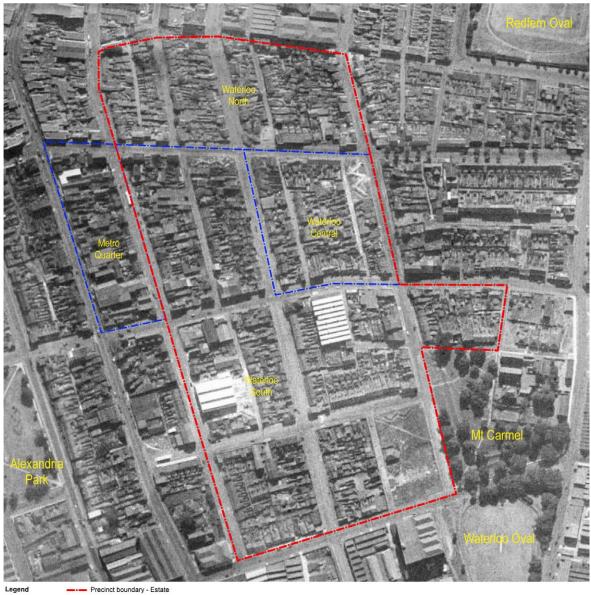
Figure 2.10 - Today Waterloo is a variety of medium to high density residential developments interspersed with tree-lined streets, parks and semi-public open spaces. (Photo: UrbanGrowth NSW).

2.5 History and Age of Existing Tree Population

By the 1820s this suburb located about 4km south of Sydney CBD supported a number of industrial operations, including a paper mill and the Waterloo Flour Mills, from which the suburb took its name. The area remained Crown Land until 1823 when 1400 acres were granted to William Hutchinson, as Waterloo Farm. In the 1850s Waterloo became an industrialised suburb. (Pollon, F. 1996)

The Estate, as it stands today, was developed over approximately three decades from the late 1950s to the 1980s. Only some small trees can be seen in the 1975 aerial on the corner of Pitt and Philip Street and along Wellington and George Street (Figure 2.14).

This highlights that all the large and very prominent Figs and Eucalyptus trees now scattered throughout the study area are typically all **less than 45 years old**.


Figure 2.11 – Aerial oblique of the development circa 1970. (Photo: Dept. of Housing/LAHC).

It should be noted that although the site now has a very good canopy coverage (Figure 2.15 and 2.16), no significant trees were present in the aerial images from 1943 (Figure 2.13). The housing was mostly small, in tight rows of terraces. The only trees evident are outside the site in the adjacent historical parks of Waterloo Park (Mt Carmel), and nearby Redfern Oval and Alexandria Park.

The aerial images from 1943 through to 1975 provide a clear visual representation of the stark difference between that earlier period with virtually no trees and that of today with many tree-lined streets and numerous trees within the public and semi-public spaces.

Figure 2.12 – Extensive and significant trees of Mt Carmel. Although not specifically within the Waterloo Estate precinct, they represent an important part of the urban forest due to the visual and historical significance they provide. (Photo: Arterra)

Sub-Precinct boundary/Metro Quarter boundary

Figure 2.13 – 1943 aerial clearly showing the trees in the nearby parks, however there appears to be no significant trees within the Precinct. (Source: NSW Lands Dept. - Six Maps)

____ Sub-Precinct boundary/Metro Quarter boundary

Figure 2.14 – 1975 aerial showing the trees in the nearby parks. Note there still appears to be very few trees within the Precinct. Some young trees are noted along George Street, John Street and in the corner of Pitt and Philip Street. (Source: CoS)

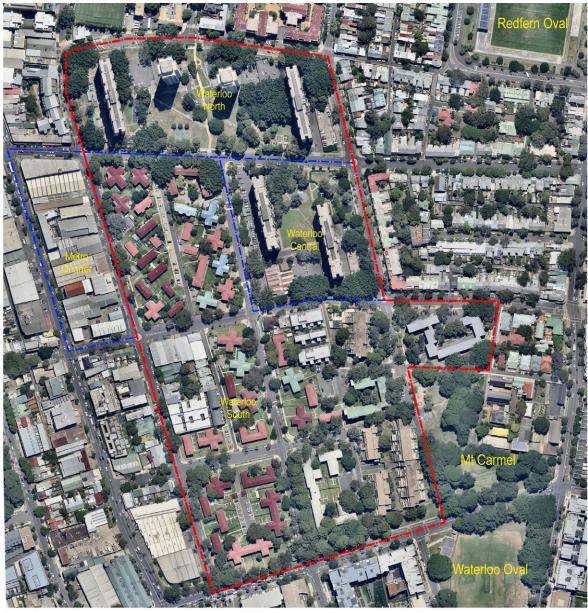


Figure 2.15 – 2017 aerial of the Precinct illustrating its relatively dense tree canopy, dominated primarily by Hill's Weeping Figs, Tallowoods and some other large, but scattered, Eucalypts. (Nearmap 11.02.2017)

Figure 2.16 – A great many trees have been planted over the last 30-40 years, in the streets (George St pictured) and the setback areas between the road reserve and the existing apartment buildings. The trees greatly contribute to the overall amenity and environmental performance of the area. Where possible and feasible the existing trees should be retained and protected. (Photo: Arterra)

2.6 Soils and Landform

Soil mapping describes the area as being part of the Tuggerah Soil Landscape association, a geologically recent deposit of wind blown, fine to medium grained, well-sorted marine quartz sand. The topsoil is expected to be naturally a loose speckled grey-brown loamy sand, with little organic matter. The topsoil usually overlies a much deeper, bleached sand layer. Stones are usually absent. The soils are therefore expected to be apedal, non-cohesive with low fertility and low water holding capacity with extremely high permeability. (Chapman 1989).

The soil profile is therefore typically very deep (greater than 2m) sandy soils. This soil is generally non-cohesive, with a very low nutrient status and low available water holding capacity. The soil tends to be moderately to strongly acidic. Most importantly the top layers of soil can become water repellent. The area can be subject to extreme wind erosion and some localised flooding with permanently high water tables (typically within 2m of the surface), particularly in lower lying areas.

The soil conditions of Waterloo present one of the greatest challenges to successful street and other tree planting due to:

- Low water holding capacity
- Potential water repellency
- Very low fertility and inability to hold nutrients
- Acidic pH
- Shallow water tables

This can produce frequent drought-like conditions for trees, unless they are in an area where they can seek out and access more reliable groundwater reserves. Plants that are subject to prolonged or frequent water stress can be more susceptible to pests and diseases unless they are well adapted to these conditions.

On a positive note, the soil is deep and sandy which generally means less dramatic impacts between roots and infrastructure, as roots can travel deeper and more easily beneath roadways, pathways and footings. This is mainly due to the soil still containing enough pore spaces and oxygen to sustain root development, even at depth. In contrast, in more typical soils, particularly clay-based soil conditions, roots will often be confined to the top 300-400mm of the profile and cause greater impacts with pavements, kerbs and footings resulting in more pronounced damage.

This does not mean that surface roots will not still cause some issues. Experience has shown that many trees will

still develop shallow roots systems in an attempt to access any rains that fall and provide structural stability in the non-cohesive soils. Similarly, all trees will develop a 'root flare' that will displace the soil immediately around the trunk regardless of the soil conditions. The larger the tree the larger this 'root flare' area will be. Figs produce significant root flares due their buttressing roots.

The site has a slightly undulating landform, highly disturbed over the past 100 years to now create levelled areas for development. Slopes across the site are typically moderate with grades around 1 in 50 to 1 in 70 (1-3% slopes). There is, however, a sharp and notable increase in slope and elevation towards the eastern portion of the study area, primarily associated with the local rise in the topography around the Our Lady of Mt Carmel School and Waterloo Park (Figure 2.17 and 2.12).

Figure 2.17 – The notable rise in landform around Mt Carmel. The photo also illustrates the assemblage of historic figs that date from circa 1900 within Mt Carmel/Waterloo Park adjacent to the site. There is a mixture of Port Jackson and Morton Bay Figs, all of significant proportions and greatly contributing to the visual character of this portion of the study area and McEvoy Street. (Photo: Arterra)

2.7 Climate and Microclimate

The Waterloo area experiences moderate temperatures, good rainfall and minimal climatic and weather extremes. It is typically described as a 'temperate' climate with hot to warm summers and cool winters, with relatively uniform rainfalls across the seasons. There is no distinctly dry season. It is located very close to the moderating affects of the coast. The average annual rainfall is 1085mm, and is fairly evenly spread across the year but with a slightly drier period from July - October. The highest rainfall usually occurs in June with an average of 123mm and the driest month is September with an average of just 60mm (figures according to the Sydney Airport AMO weather recording station).

Maximum average daily temperatures, recorded range from 26.5°C in January to 17°C in July. The minimum average daily temperatures range from a low of 19°C in February down to lows of 7.2°C in July. Frosts are extremely rare.

The primary wind direction is from the north-east to south-east in the afternoons while it is predominantly from the west and north-west in the mornings. This is common of coastal areas dominated by 'sea breeze' affects. The strongest winds (>30km/h) are normally experienced from the south-east and southerly directions and later in the day. (Source: Australian Bureau of Meteorology).

In comparison with other areas of the greater western Sydney region, that experience much higher maximum and lower minimum temperatures and substantially lower annual rainfall, the Waterloo area enjoys a very comfortable climate which in turn lends itself to a very diverse range of tree species that will happily grow in the area. There are

no noticeable microclimatic influences in the area apart from the overshadowing of existing and potential tower blocks and the associated wind funnelling and down drafts that may be experienced from adjoining tall towers.

The potential impacts of climate change should be considered which is likely to result in higher average temperatures, longer drought periods and increased extreme storm events. Planting selection, therefore, should consider these factors. This has been further highlighted within the Climate Change Adaptation Report prepared by Aecom, with the various climatic scenarios, risks and mitigation strategies considered and discussed.

2.8 Existing Tree Population and Statistics

The following statistics and commentary relate specifically to the area defined as the Waterloo Estate. This information is intended to provide a background to the existing urban forest and provide an analysis and understanding of existing tree population within the boundary of the Estate. The information is provided to support the overall recommendations made for the Estate. Although trees adjoining the Estate boundary (eg. within Mt Carmel/Waterloo Park and on opposites side of adjoining streets) were also reviewed and assessed, for clarity, they are not included within the following statistics.

Within the precinct area of the Estate, a total of **939 trees** were identified, inspected and assessed. The trees are predominantly located in the public domain, the streets and the semi-public areas surrounding the residential towers. Although there are numerous trees in the private property areas, most of these are close to the existing street frontages or within the building setbacks from the streets. The trees that are within the more 'private' yards and rear spaces around the low rise apartment blocks tend to be relatively smaller trees and often self-sown 'invasive' or other less desirable species.

The following analysis has broken up the existing tree population into the different families, genus, species and retention values. These have been used to assess the existing tree population against the CoS targets. Corresponding plans in Appendix 6 visually display how the existing trees are distributed across the site, which was used for information and to help identify key trees and groups to be included and protected within the Indicative Concept Plan.

2.8.1 Existing Tree Family Distribution.

The tree population is dominated by 4-5 main 'Families'. The percentage of the population they represent is illustrated in the following table. The preferred CoS target is to have no more than 40% of one family. As expected, and is very common through most Australian cities, Myrtaceae dominates at over 47% of the total population.

Botanical Families	No.	% total pop.
MYRTACEAE (eg. Eucalypts, Corymbia, Tristaniopsis, Melaleuca,	446	47%
Lophostemon, Waterhousea)		
CASUARINACEAE (eg. Casuarina)	89	9%
MORACEAE (eg. Figs)	78	8%
FABACEAE (eg. Robinia)	46	5%
ARECACEAE (eg. Palm Trees)	43	5%
PLATANACEAE (eg. Planes)	42	4%
SAPINDACEAE (eg. Cupaniopsis)	39	4%
ULMACAEAE	20	2%
MALVACEAE	17	2%
BIGNONIACEAE (eg. Jacaranda)	15	2%
PROTEACEAE	14	1%
PODOCARPACEAE	13	1%
OLEACEAE	10	1%
HAMAMELIDACEAE	10	1%
LAURACEAE	9	<1%
RUTACEAE	8	<1%
ROSACEAE	7	<1%
ARAUCARIACEAE	7	<1%
ANACARDIACEAE	4	<1%
MELIACEAE	4	<1%
PITTOSPORACEAE	3	<1%
SALICACEAE	3	<1%
ELAEOCARPACEAE	2	<1%
CUPRESSACEAE	2	<1%
EUPHORBIACEAE	2	<1%
LYTHRACEAE	2	<1%
MAGNOLIACEAE	2	<1%
ARALIACEAE	1	<1%
APOCYNACEAE	1	<1%
ASPARAGACEAE	1	<1%
FAGACEAE	1	<1%
Total	939	100%

Table 2 – Existing Trees By Botanic Family

2.8.2 Existing Genus Distribution.

There are currently 68 different genera within the study area. The CoS target is to have no more than 30% of the population in any one genus. The top 15 genera are represented in the following table. As expected, and is common in many Australian cities, the Eucalyptus/Corymbia and Ficus genera currently dominate at approximately 27% of the total tree population (19% / 5% and 8% respectively).

Most Prevalent Genus (in order of prevalence)	No.	% total pop.
Eucalyptus	182	19%
Casuarina	89	9%
Ficus	77	8%
Melaleuca	73	8%
Corymbia	51	5%
Lophostemon	44	5%
Platanus	42	4%
Robinia	38	4%
Cupaniopsis	31	3%
Agonis	29	3%
Callistemon	26	3%
Archontophoenix	25	3%
Tristaniopsis	22	2%
Celtis	17	2%
Jacaranda	14	1%

Table 3 – Existing Trees By Botanic Genus

2.8.3 Existing Species Composition.

There are currently **103** different species within the study area. The CoS target is to have no more than 10% in any one species. The top 15 species are illustrated in the following table.

Most Prevalent Species (in order of prevalence)	No.	% total pop.		
Eucalyptus microcorys (Tallowood)	71	8%		
Melaleuca quinquenervia (Broad-leaved Paperbark)	68	7%		
Casuarina cunninghamiana (River She-Oak)	68	7%		
Ficus microcarpa var. hillii (Hill's Weeping Fig)	63	7%		
Lophostemon confertus (Brush Box)	44	5%		
Platanus x acerifolia (London Plane Tree)	42	5%		
Eucalyptus botryoides (Bangalay)	40	4%		
Robinia pseudoacacia 'Frisia' (Black Locust)	37	4%		
Corymbia maculata (Spotted Gum)	35	4%		
Cupaniopsis anacardioides (Tuckeroo)	31	3%		
Agonis flexuosa (Willow Myrtle)	29	3%		
Archontophoenix cunninghamiana	25	3%		
Callistemon viminalis cv. (Bottlebrush)	25	3%		
Tristaniopsis laurina (Water Gum)	22	2%		
Casuarina glauca (Swamp Oak)	21	2%		

Table 4 – Existing Trees By Species

2.8.4 Existing Tree Retention Values.

The number and the percentage of the total population of trees in the different retention values are shown in the following table.

Retention Value	No.	% total pop.
High	141	15%
Moderate	299	32%
Low	477	51%
Very Low / Remove	22	2%

With regard to the High Value trees, the majority are represented by the following species:

- Eucalyptus microcorys (Tallowood) (31%),
- Ficus microcarpa var. hillii (Hills Weeping Fig) (22%),
- Corymbia maculata (Spotted Gum) (8%),
- Eucalyptus botyoides (Bangalay) (5%)
- Eucalyptus saligna (Sydney Blue Gum) (5%) and
- Corymbia citriodora (Lemon Scented Gum) (5%).

The remaining High Value trees are typically represented by only a few individual specimens within any given species. Refer to accompanying Tree Retention Values Plan (Figure 2.18 on following page) for a graphical representation of the tree retention values and their distribution around the site.

2.8.5 Existing Tree Age Class, Type, Size and Origin.

The tree population represents what would be considered a relatively normal breakup of age class, size and origin. None of these statistically represent a great cause for concern and the existing population provides a good basis upon which to create a sustainable urban forest strategy moving forward.

With regard to age of the population, the vast majority of trees fall into the mature age class. A good representation of semi-mature trees, however, is also present. Most importantly, there is very little evidence of an over-mature or senescent tree population that needs to be specifically addressed as part of the ultimate strategy. The new development is likely to introduce another wave of young tree planting that will help further balance the age class of the urban forest population.

Legend

Precinct boundary - Estate

Sub-Precinct boundary/Metro Quarter boundary	
Cadastre	
High Retention value	
Moderate Retention value	
Low Retention value	
Very Low Retention value (should remove)	

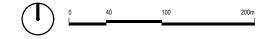


Figure 2.18 – Map of the Estate illustrating the existing trees and their relative positions and existing retention values . (Source: Arterra)

Table 6 – Existing Trees By Age Class

Existing Tree Age Class	No.	% total pop.
Young	46	5%
Semi-mature	183	19%
Mature	709	75%
Over-mature	1	<1%

Table 7 – Existing Trees By Type of Tree

Existing Tree – Tree Type	No.	% total pop.
Evergreen	719	77%
Deciduous	155	16%
Palm-Single Stem	43	5%
Conifer	22	2%

Table 8 – Existing Trees By Vigour and Condition

Existing Tree – Vigour and Condition	No.	% total pop.
Excellent	29	3%
Good	494	53%
Fair	374	40%
Poor	37	4%
Moribund	4	<1%
Dead	1	<1%

Table 9 – Existing Trees By Its Ultimate Potential Size

Existing Tree – Ultimate Sizes	No.	% total pop.	CoS target.
Small	181	19%	10%
Medium	415	44%	45%
Large	251	27%	35%
Civic	92	10%	10%

Table 10 – Existing Trees By Origin

Existing Tree – Tree Origin	No.	% total pop.
Endemic to local area	165	18%
Native to wider Sydney region or Australia generally	526	56%
Exotic	220	23%
Invasive / Weeds	28	3%

2.8.6 Existing Canopy Cover

Current analysis of tree canopy coverage** in the Southern Precinct is broken down in the following table. Refer to Tree Canopy Cover Plan (Figure 5.5 in Section 5.0) for a graphical representation.

Table 11 – Existing Canopy Cover - South Precinct Only

Study Area	Total Area	Canopy m2	% total canopy	CoS target.
Parks / Reserves	0m2	0m2	0%	25%
Private	88,528m2	22,372m2	25.3%	25%
Streets	34,823m2	13,293m2	38.2%	50%
Total	123,351m2	35,665m2	28.9%	27%

** Note - Area calculations include all areas within the Waterloo South Precinct and exclude the Metro Quarter, the Central or Northern Precincts and any other areas and portions of road reserves outside of the Estate boundary. There are currently no 'public' park areas within the existing Waterloo Estate precinct.

2.9 Arrangement and Relationship to Existing Structures

The trees are situated widely throughout the Estate, within the roadside verges, in the gardens surrounding the buildings and the semi-public open spaces. Most of the significant and important trees are often located either in the existing road verges or within the setback between the road reserve and the existing buildings.

2.9.1 The Fig Trees

- **Scale**. The numerous *Ficus microcarpa var. hillii* (Hill's Weeping Fig) and occasional *Ficus macrophylla* (Morton Bay Fig) are very large, civic-scaled trees that dominate much of the surrounding open spaces and streets. They require ample space both above and below ground.
- **Density**. The Figs have often been planted in close proximity to each other with very little consideration for their ultimate size and shape (Figure 2.19). Their canopies are often inter-grown and asymmetric and their roots intertwined throughout the adjacent built infrastructure and with other trees.
- **Infrastructure**. They are often planted very close to buildings and other infrastructure (Figure 2.20 and 2.21). This has often created issues with the form of individual trees and presents conflicts with the surrounding infrastructure such as footpaths, walls and car parking and below ground drainage lines.
- **Shade**. The Figs now present a real challenge for creating inviting and usable spaces beneath, and around them, due to the heavy shade, near constant fruit and leaf fall and extensive surface roots and buttressing. They do provide very useful shading in summer and substantially help to alleviate 'urban heat island' effects.
- **Root Systems**. The extensive buttress root system of the Figs will create challenges for developing new pathways and other new infrastructure (Figure 2.21). Adequate space must be allowed for the trunks and roots to allow for future expansion. The roots of figs often spread many 10s of metres away from the tree. Significant figs roots could easily be found 30-50m away from an individual tree.

Figure 2.19 – Ficus microcarpa var. hillii (Hill's Weeping Fig) on Wellington St with extensive dense canopies growing within close proximity of each other. (Photo: Arterra)

Figure 2.20 – Ficus macrophylla (Morton Bay Fig) growing around and together with the existing buildings. Retention of this tree would likely require keeping parts of the many nearby structures and extremely sensitive and site specific demolition of others. (Photo: Arterra)

Figure 2.21 – Fig trees with extensive roots in very close proximity to each other and surrounding buildings. (Photo: Arterra)

2.9.2 Large Eucalypt (Gum) Trees

- The larger Eucalypts (eg. *E. bicostata* (Southern Blue Gum), *E. saligna* (Sydney Blue Gum) and *E. microcorys* (Tallowood)) across the study area provide **excellent scale and landscape amenity**. Their retention would add value and assist with the delivery of mature landscapes to the future buildings, streets and open spaces. This may prove challenging as Eucalypts generally have a relatively low tolerance of construction related disturbances.
- **Protection Zones** Many of the Eucalypts have large trunk diameters and will therefore require extensive setbacks and tree protection zones in order to adequately protect them.
- **Demolition** Like the Figs, many of the larger Eucalypts are very close to existing buildings and therefore demolition and excavation would have to be dealt with very sensitively if the trees are to be successfully retained.

Figure 2.22 – A large Eucalyptus saligna (Sydney Blue Gum) T435 near Reeve St. (Photo: Arterra)

2.10 Assessment of the Overall Existing Tree Population and its Composition

The following summarises the key findings from the analysis of the field assessments and statistics.

- **Composition by family, genus and species**. The composition of the tree population by species is already approaching or exceeding some set targets. Care will be needed when selecting species from the Myrtaceae family to prevent further skewing of the representation of this family. Current targets advocated by the CoS, and others, state that a single family should make up no more than 40% of the population and no individual species should represent more than 10%.
- Size Distribution. The current population is relatively balanced, however there is a slight over reliance on small trees. The planting of more 'civic' scaled trees (extra large) in prominent and appropriate positions will help to balance the sizes of trees towards the larger spectrum. Notably, many of the smaller trees are very close to the existing apartments (eg. palms) and are likely to be removed as part of any redevelopment programs. This too will assist in re-balancing this statistic, provided medium and larger trees are planted around the new development and within new parks.
- Age Distribution. The current population is relatively balanced. The likelihood of new tree planting as
 a result of the redevelopment will maintain the age distribution of the urban forest at acceptable levels.
 Maintaining an appropriate distribution within age classes of the population allows a balanced approach
 to maintaining and improving canopy cover over time. Mature trees typically provide the greatest benefits
 in terms of canopy, however it is also important to remember that trees take many years to grow and
 provide the benefits of the mature tree. Trees will also grow old and eventually require removal, meaning
 that ongoing and relatively continuous planting is always required to maintain and improve the canopy
 and age class distribution of any urban forest into the future.
- **Canopy Cover**. The current canopy cover is very good and actually just exceeds the advocated target for the overall suburb. Retaining large, high value trees retains the canopy and immediately provides all the benefits (environmental, canopy, amenity, scale and aesthetics) of big trees to a new development. Removal of large canopy trees will have a corresponding negative effect and will take many years to ameliorate and offset the losses. To achieve the stated aims of the precinct redevelopment, meeting and exceeding the canopy coverage targets will be crucial.

3. PLANNING FRAMEWORK AND INDICATIVE CONCEPT PROPOSAL

3.0 Waterloo South Planning Proposal

The planning proposal will establish new land use planning controls for Waterloo South, including zoning and development standards to be included in Sydney LEP 2012, a new section in Part 5 of DCP 2012, and an infrastructure framework. Turner Studio and Turf has prepared an Urban Design and Public Domain Study which establishes an Indicative Concept Proposal presenting an indicative renewal outcome for Waterloo South. The Urban Design and Public Domain Study provides a comprehensive urban design vision and strategy to guide future development of Waterloo South and has informed the proposed planning framework. The Indicative Concept Proposal has also been used as the basis for testing, understanding and communicating the potential development outcomes of the proposed planning framework.

The Indicative Concept Proposal comprises:

- Approximately 2.57 hectares of public open space representing 17.8% of the total Estate (Gross Estate area existing roads) proposed to be dedicated to the City of Sydney Council, comprising:
 - Village Green a 2.25 hectare park located next to the Waterloo Metro Station; and
 - Waterloo Common and adjacent 0.32 hectares located in the heart of the Waterloo South precinct.
 - The 2.57 hectares all fall within the Waterloo South Planning Proposal representing 32.3% of public open space (Gross Waterloo South Area proposed roads).
- Retention of 52% of existing high and moderate value trees (including existing fig trees) and the planting of three trees to replace each high and moderate value tree removed.
- Coverage of 30% of Waterloo South by tree canopy.
- Approximately 257,000 sqm of GFA on the LAHC land, comprising:
 - Approximately 239,100 sqm GFA of residential accommodation, providing for approximately 3,048 dwellings (comprising a mix of market and social (affordable) housing dwellings);
 - Approximately 11,200 sqm of GFA for commercial premises, including, but not limited to, supermarkets, shops, food & drink premises and health facilities; and
 - Approximately 6,700 sqm of community facilities and early education and child care facilities.

The key features of the Indicative Concept Proposal are:

- It is a design and open space led approach.
- Creation of two large parks of high amenity by ensuring good sunlight access.
- Creation of a pedestrian priority precinct with new open spaces and a network of roads, lanes and pedestrian links.
- Conversion of George Street into a landscaped pedestrian and cycle friendly boulevard and creation of a walkable loop designed to cater to the needs of all ages.
- A new local retail hub located centrally within Waterloo South to serve the needs of the local community.
- A target of 80% of dwellings to have local retail services and open space within 200m of their building entry.
- Achievement of a 6 Star Green Star Communities rating, with minimum 5-star Green Star Design & As-Built (Design Review certified).
- A range of Water Sensitive Urban Design (WSUD) features.

The proposed land allocation for the Waterloo South precinct is described in Table 12 below.

Land Allocation	Existing	Proposed
Roads	3.12ha / 25.3%	4.38ha / 35.5%
Developed area (Private sites)	0.86ha / 6.98%	0.86ha / 7%
Developed area (LAHC property)	8.28ha / 67.2%	4.26ha / 34.6%
Public open space	Nil / 0%	2.57ha / 20.9% (32.3%
(dedicated to the City of Sydney)		excluding roads)
Other publicly accessible open space	0.06ha / 0.5%	0.25ha / 2%
(Including former roads and private/LAHC land)		
TOTAL	12.32ha	12.32ha

Table 12 – Breakdown of Allocation of Land Within Waterl	oo South
--	----------

A plan of the Indicative Concept Proposal is included at Figure 3.1 and computer generated images (CGIs) are included at Figures 3.2, 3.3 & 3.4.

Figure 3.1 – Indicative Concept Proposal [Source: Turner Studio]

Figure 3.2 – Computer generated image of the proposal, looking into the Village Green from the corner of Raglan and Cope Streets (Source: Turner Studio)

Figure 3.3 – Computer generated image of the proposal, looking north along Cope Street towards Raglan Street (Source: Turner Studio)

Figure 3.4 – Computer generated image of the proposal, looking north towards Waterloo Common from the corner of George and McEvoy Street (Source: Turner Studio)

Waterloo South Precinct Planning Proposal | Urban Forest Study - 24/3/2020

3.1 Green Star Community Rating and Initiatives

The Estate is attempting to achieve Green Star ratings, as developed by the Green Building Council of Australia. 'Green Star – Communities' assesses the planning, design and construction of large scale development projects at a precinct, neighbourhood and community scale. It provides a rigorous and holistic rating across five primary impact categories. These categories are:

- 1. Governance
- 2. Liveability
- 3. Economic prosperity
- 4. Environment
- 5. Innovation

The urban forest study aligns with many of these rating criteria. The Liveability category encourages the development of healthy and active lifestyles, and rewards communities that have a high level of amenity, activity, and inclusiveness. The Environment category aims to reduce the impact of urban development on ecosystems. It encourages resource management and efficiency by promoting infrastructure, transport, and buildings, with reduced ecological footprints. The Environment category therefore seeks to reduce the impacts of projects on land, water, and the atmosphere.

Although urban forestry and trees are not specifically outlined or assessed in the current rating system, the urban forest initiatives outlined within this study aim to support the requirements of the Green Star rating system. The way that this will be achieved includes most importantly:

- Increasing canopy coverage wherever possible to reduce greenhouse gas emissions by shading buildings, cars and pavements.
- Mitigating urban heat island effects by reducing ambient temperatures at ground level and improved cooling during extreme heatwave through evapotranspiration.
- Creating more comfortable and walkable streetscapes, thereby promoting liveability and activity.
- Utilising trees to capture and reduce gaseous and particulate pollutants and intercept and ameliorate stormwater flows.
- Improving biodiversity by advocating an appropriate and diverse mix of tree species throughout the wider estate and utilising, where sensible, endemic tree species that provide beneficial habitat and linkages.
- Adapting to climate change by recognising that a gradual change and adoption of potential species that
 may be better suited to warmer climates and increased heatwave extremes is needed. Also by promoting
 the use of water sensitive design strategies that may passively irrigate trees wherever possible to allow
 them to better deal with extremes and future drought conditions.

Figure 3.5 – In our ever warming climate, urban greening and shading will be a critical aspect to achieving the wider environmental, social and health benefits for our communities.

3.2 Place Making Initiatives

At the heart of the Indicative Concept Plan is the desire to create a resilient and connected community. As the Estate grows, 'place making' initiatives must amplify the community voice and support networks between people. During the consideration of the urban forest strategy several key place making principles have been woven into the strategies and objectives.

Particularly relevant to the Urban Forest Study, these place making initiatives include:

- Supporting the Metro station as a destination and as a gateway to the surrounding neighbourhood.
- Embedding educational, recreational and productive programs into the public domain.
- Providing a rich tapestry of inclusive and informal gathering spaces.
- Delivering a fine grain urban grid, which supports a highly walkable place.
- Making nature a central theme, leveraging off Waterloo's existing trees to intensify the feeling and perception of greenery.
- Creating an engaging ground floor interface for pedestrian delight.

The ways the urban forest strategy will contribute to the above initiatives include:

- Retaining and protecting a significant number of the existing high and moderate value trees.
- Prioritising new tree planting within all public areas and streets.
- Integrating the tree planting together with the urban grid and the retail needs.
- Using trees to help create comfort and shade, in a safe and beautiful way.
- Using granular, broken and eroded street edges to create special and diverse spaces for diverse and signature tree planting to promote social gathering.
- Advocating signature and relatively unique trees to highlight key activity nodes.
- Promoting the use of the podium levels of new buildings for tree planting and potential productive gardens and community orchards.
- Utilising trees and the urban forest as a support and focus for temporary or permanent artistic and sculptural displays (in a non-injurious way) and promoting understanding and appreciation for the urban forest via community tours and community events.

Figure 3.6 – Trees have a great deal of influence over the environmental performance of an urban area. Good canopy cover, particularly over streets and fronting buildings can help mitigate urban heat island affects, lower ambient temperatures by several degrees during heat waves and reduce the demands for air conditioning. The sensible use of deciduous species in key locations also allows solar access for sunlight and warmth during cooler months. (Photo: Arterra)

3.3 Canopy Cover - Benchmarking

The CoS has committed in its Urban Forest Strategy 2013 to increase its average total canopy coverage from 15.5% to 23.25% by 2030, and then to **27.13% by 2050**. This aligns with most other international cities that have all recognised the benefits of urban greening. The currently measured canopy coverage of the surrounding Waterloo and Alexandria area stands at 16%. This means the Estate, with an existing canopy cover of 31%, is providing a very substantial contribution to the canopy coverage of the area as a whole. Any reduction in canopy cover within the Estate will likely have a commensurate flow on effect to the wider area and the city as a whole. The development within the Precinct should therefore maintain or increase the potential canopy cover.

Direct comparison between individual cities and areas is often difficult due to different methods and accuracy of calculating canopy coverage and the variations between different cities and their climates and land use mixes. There are also variations in the overall extent and areas that are being measured within the cities. However, as an example, and for comparison, the following information is provided:

- **Melbourne** the city is aiming to increase the public realm canopy cover from 22% (2012) to 40% by 2040.
- **Chicago** at August 2012 the canopy cover was estimated at 15.5% using i-Tree software. They have a target of 20% by 2020.
- Seattle established a target in 2007 to reach 30% by 2037. In 2016 a canopy study measured the coverage at 28%.
- Vancouver mapped their coverage by LiDAR in 2013 at 18%. Their target is 22% by 2050.
- **Christchurch** the current canopy cover from aerial imagery and LiDAR data collected during the summer of 2015/2016 was 15.59%.

Researchers at the Massachusetts Institute of Technology (MIT), in collaboration with the World Economic Forum, launched TREEPEDIA in 2016, which is a new platform that uses Google Street View data to measure and compare the green canopy in cities around the world. They have developed an innovative metric utilizing Google Street View (GSV) panoramas, called the '**Green View Index**' by which cities can evaluate and compare green canopy coverage as viewed from street level perception. (Project by the MIT Senseable City Lab - http://senseable.mit. edu/treepedia accessed May 2018).

The following graph displays where Sydney lies in terms of the Green View Index, as measured under the above system. It is important to note this measure is based on a street level assessment rather than actual plan view canopy coverage, so direct comparison to other measurements is not possible.

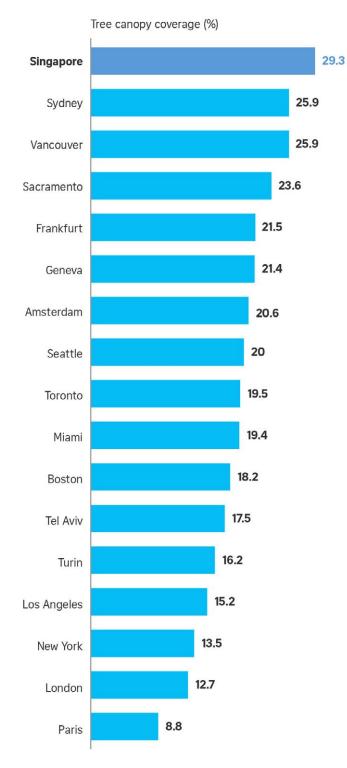


Figure 3.7 – A graph of the Green View Index canopy coverage score as presented in Singapore's Straits Times in 2017. Sydney is well

placed in comparison to other global cities. (Source: Treepedia and Straits Times Graphics. https://www.straitstimes.com/singapore/environment/singapore-tops-list-of-17-cities-with-highest-greenery-density -published 22 February 2017).

4. IMPLEMENTATION PLAN AND URBAN FOREST STRATEGIES

4.0 Overview

Research has consistently shown that medium to large trees provide the greatest ecological and community benefits, in comparison to small trees. They create more canopy spread and shading benefits, absorption of more gaseous pollutants, stormwater interception, lower levels of tree vandalism, and achieve higher canopy clearances. Medium and larger growing trees are also commonly longer lived than small trees. Large trees, however, do require larger soil volumes and more physical space above and below ground than small trees, which needs to be designed and factored into any new plantings. However, the ultimate benefits to the community are often exponentially increased over their lifetime.

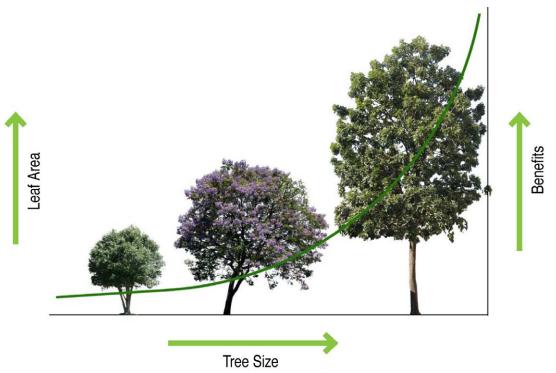


Figure 4.1 - Tree size does matter - the benefits of trees increase exponentially with size and increases in leaf area. (Adapted from Urban Tree Alliance http://www.urbantreealliance.org/why-trees/ accessed 12/7/2012)

Using the paradigm of 'right tree for the right location', a medium to large tree will only be specified and planted for an area where there is obviously sufficient space, and the growing conditions are suitable for the foreseeable life span of the tree. Smaller trees will also have a place in the urban forest for areas where physical space, overhead wires, parking and traffic restrictions or exposure present overriding factors.

The holistic planning of the Estate provides some real opportunities and benefits for the creation of a sustainable and valuable urban forest. As part of this project there is a rare opportunity within an inner urban area to design for trees and implement urban forest initiatives on a large scale.

Waterloo South Precinct Planning Proposal | Urban Forest Study - 24/3/2020

This document outlines the strategies and targets for the Waterloo South precinct required to:

- Retain important existing trees.
- Create opportunities for new and replacement trees.
- Maximise tree planting throughout the precinct.
- Implement successful new tree planting.
- Achieve objectives of the precinct and other planning documents eg. canopy coverage, species diversity.
- Plan for, and plant trees with the end point in mind. Ensure the 'Right Tree for the Right Place'. This will minimise the pruning and future interventions required, maximise natural root development, and provide trees with improved resilience. This will minimise resource inputs and maximize the benefits.

Figure 4.2 – When properly considered, trees can be valuable contributors to urban ecosystem services with minimal ongoing resource inputs and minimal impacts to other hard infrastructure and human wellbeing. (Photo: Arterra)

4.1 Canopy Coverage Targets

The following summarises the key opportunities and initiatives to achieve and increase the canopy coverage within Waterloo South.

- Maintain, or ideally exceed, the current 28% **overall canopy coverage** within the precinct and achieve the CoS targets of 50% canopy to streets. Varying slightly to the CoS targets, it is recommended to achieve at least 40% to parks, and at least 20% to private property.
- **Retain and protect the most significant trees** in the precinct where feasible, and incorporate them as mature elements within the proposed landscape. They can provide an excellent framework for future parks and other green spaces.
- Recognise that **mature trees require space** around them to protect their root plates and therefore it will be necessary to minimise buildings, level changes or service trenching through any areas retaining large trees. The urban design team could look at suspended structures or walkways around existing trees if they are sensitively designed. Provision of open surface area around the tree is typically more important than soil depths.
- Take an holistic view to **new street profile design** to work new and existing trees in as one of the core elements of the design, not an after-thought. Space above and below ground is the key. Consider final sizes of the root plate, trunks, trunk flares and canopy, particularly around any existing or new Figs or other civic scale trees.
- Incorporate new and existing trees into verge gardens and lawn areas, wherever possible, to allow the maximum space for the trees trunks and structural roots to expand and allow infiltration of air and water into the root zones. Direct surface water and runoff towards the existing and new trees to passively irrigate the trees in an ever-warming climate.
- Utilise trees for supplementing wind amelioration, by understanding the most desirable forms, sizes and densities of tree canopy in any given location. From experience and wind modelling, medium to large trees with a dense canopy are probably more important than small trees for wind amelioration.

4.2 Green Links, Ecology and Open Space

Trees provide shelter, roosting, food and other habitat resources for a range of fauna species. As outlined in Urban Ecology: Theory Policy and Practice in NSW, trees can benefit biodiversity in urban areas by making the matrix between surrounding core habitat patches or bushland more permeable and accessible to a range of species (Catterall et al., 1991). Trees are often described as keystone structures in highly modified urban landscapes because their ecological benefit, as defined by the value and ecosystem services they provide, is much greater than the land area they occupy. (Manning et al., 2009. Stragnoll et al., 2012)

Consideration has been given to recommending trees, which expand on, and provide a connection between, open spaces or other vegetated areas, particularly those identified as priority habitat areas. Although native trees are preferable in this regard, it is important to note that exotic species also have habitat value. A mix of species is to be targeted throughout the entire precinct to achieve species diversity and other ecological and community outcomes.

4.3 Urban Forest Resilience and Diversity

A key principle of a sustainable urban forest is an appropriately diverse mix of species – both native and exotic. This reduces the risk of loss should one species be susceptible to a new pest or disease. Diversity of tree species also provides benefits for biodiversity, aesthetic reasons, improves resilience and the provision of summer shade and winter sun. As we move into more uncertain times with regard to climate it is vital that any new tree planting considers proven past performances and potential resilience to the rigours of urban existence, climate change and a changing landscape of pests and diseases.

4.3.1 Climate Change Adaption

It is expected that potential water use restrictions and lower than average rainfalls that Sydney has previously periodically experienced will continue and potentially worsen into the longer term. Street and other trees that are selected will need to be capable of surviving an average drought period, in reasonable condition, without reliance on potable water supplies. Passive irrigation through the use of Water Sensitive Urban Design will be designed into many of the new tree planting areas and will assist with additional water being available to trees in times of drought and during normal times. The use of some species of trees that thrive in slightly warmer climates and provide good shading such as Leopardwood (*Caesalpinina ferrea*), Tulipwood (*Harpullia pendula*) and Agathis and *Araucaria sp.* would be very wise.

Figure 4.3 – The existing and proposed urban trees within the Estate will also provide some benefits to common urban wildlife. Where appropriate native or endemic species will be utilised, but even exotic species play an important part in providing roosting, nesting and feeding opportunities for a range of fauna. (Photo: Arterra)

4.3.2 Pest and Disease Resilience

Overseas experience shows that widespread infestations of harmful pests and diseases can have devastating consequences on parts of our urban tree populations. The impact of pest and disease on our urban forests is only likely to increase. This is due to a range of factors, such as increased temperatures (particularly over winter), storm events, greater or lower levels of rainfall events and the increase in international travel and trade, with the risks of a pest 'hitching a ride' to Sydney.

The recommended tree species for the Estate shall be chosen to be resistant to currently known pests and disease. A diversity of species will be important in reducing any potential impact of future widespread or devastating diseases on specific tree species. Where reasonable and practical to do so, a designed mixture of 2 or more species from different botanic families should be chosen for many of the major streets to prevent the likelihood of any catastrophic canopy loss due to climate change, droughts or pests.

4.3.3 Biodiversity

There is often much debate about the use of locally indigenous species, that is, species that originally grew within the area. Whilst locally indigenous species may be the most appropriate for local environmental conditions, the growing conditions within our urban environments are often now very different, particularly in a street situation. We must also consider the natural vegetation assemblage in this part of Sydney would have been low woodlands and heath. Many of the species that grew in the Waterloo area naturally would not contribute to the wider urban forest goals or relate well to the built forms. Disturbed soil profiles, soil compaction, higher nutrient status, altered drainage patterns and paved surfaces are just a few of the other problems with which urban trees must contend.

When addressing this issue, a more useful division may be to view this point three ways:-

- Locally indigenous natives;
- Natives from other parts of Sydney or Australia;
- Exotic species from other areas of the world.

Local natives have the advantage of being climatically suited and live in some degree of equilibrium with pest natural organisms such as insects and fungi. Use of local natives promotes biodiversity and the creation of wildlife corridors, reinforces an 'Australian' sense of place, and can be very drought resistant. Natives from other regions are less likely to be climatically adapted and they may enjoy freedom from local pest organisms but if they become infested may succumb faster. Exotics may be almost completely free of native pests and diseases but run the risk of being devastated if others are accidentally introduced from overseas.

Regarding local, or at least NSW east coast native species, and their suitability as inner urban street trees, the species that are best adapted are usually from the drier rainforest and rainforest margins, particularly littoral rainforests where most trees are long lived, shade tolerant and shade producing. They also often continue to transpire during prolonged heat-waves, which provide important cooling effects through evapotranspiration. Some other species like many of our Eucalypt species tend to shut down their metabolic processes during the heat of the day and therefore make only modest contributions to mitigating the urban heat island affects. They are also often not as successful as other species at providing good levels of shade to pavements and parks.

The other highly successful species come from freshwater swamps and other areas that are poorly drained and aerated. Species from these environments are often highly resistant to root rot organisms and their root systems are well adapted to adverse soil conditions.

Many of our familiar natives such as Eucalypt trees are from the more open and drier vegetation communities. These species seem to perform poorly as street trees in inner urban areas due to their highly adapted and more specialised physiology. They are often adapted to soils of very low nutrient status with perfect drainage where rot organisms are at a disadvantage. Consequently these species are less tolerant to interference with their root systems, including compaction, waterlogging and construction damage. Depending on the design principles sought, natives can also display a variable habit or form which makes it difficult to establish and maintain a consistently planted avenue.

They are also highly adapted to natural fire regimes and a consequence is they often 'bolt' in growth for brief periods when post-fire soil nutrients are temporarily higher. As this increased growth continues in a high nutrient, fire free environment the tree may become elongated, structurally weak and the foliage and bark becomes susceptible to attack by insects and other pests.

An important advantage of many exotics in the inner urban context is that they include numerous useful deciduous trees, which provide greater sun access to the streets and residential apartments through the winter months. Some natives are deciduous but generally in spring or early summer (an inheritance of their monsoonal origins). The red and white cedars (*Toona ciliata, Melia azedarach*) are the closest native trees we have to winter deciduous but both suffer from severe pest problems under urban conditions and are often unreliable performers.

Many exotic deciduous species have the advantage of hundreds of years of selective breeding, which ensures quality stock. They are normally pollution tolerant, are more resilient to cope with interference with roots or damage during construction works. The canopy shape and architecture of many exotics are able to tolerate the pruning and shaping required for urban infrastructure and street clearances.

In summary, both natives and exotics have their strengths and weaknesses for use as trees within the Estate. The urban forest strategy aims to advocate the right tree for the right location, for the right reasons and to continually strike an appropriate balance between the many competing objectives each tee must deal with.

4.3.4 Wind and Overshadowing Impacts on Trees

It is important to note that this report is addressing a broad scale planning proposal and detailed design and consideration about the exact trees species and their positioning is yet to be resolved. This would be considered at the detailed design and development application stages, selecting 'the right tree for the right locations'. This would involve further considerations about wind impacts, overshadowing and general solar access once surrounding built form is fully known.

The following broad comments and observations, however, are made about wind impacts and overshadowing to address concerns raised by the CoS and assist future designers to consider the relevant factors when assessing and choosing appropriate trees. Obviously extreme wind tunnelling and downdrafts, particularly when it is relatively constant, can have a great affect on the ability to install and establish good trees. The smaller and the more fragile the tree species the more it may struggle. The following points are to be considered during detailed designs.

- Focus on appropriate tower and building designs and use of higher level awnings and other deflection devices that will help deflect and mitigate the impacts of wind on trees, particularly of downdrafts.
- Give preference to use of hardy evergreen trees that naturally grow in littoral rainforest and/or frontline coastal environments that are more tolerant of exposure to winds and overshadowing by other plants (for example *Glochidion ferdinandi, Cupaniopsis anacardioides, Harpullia pendula, Waterhousea floribunda 'Green Avenue', Elaeocarpus eumundi, Syzygium paniculatum* are tolerant of such environmental conditions).
- Give preference to use of other trees that have proven to survive in CBD wind tunnelled streets in Sydney (e.g. *Livistona australis, Celtis australis, Magnolia grandiflora 'Exmouth'*, and *Pyrus calleryana*)
- Install trees at very advanced sizes (ie. minimum 400-800L) so that they have some inherent strength, age and rigidity to mitigate and deal with more adverse environmental conditions.
- Where wind or overshadowing is expected, avoid trees with very fine or very broad foliage or long brittle branching structures or that are not good at tolerating deep shade or excessive winds (e.g. *Eucalyptus sp., Corymbia sp. Caesalpinia sp.* and *Gleditsia sp.*)
- Provide excellent soil and subsurface growing conditions so that the trees that are planted are provided with optimum conditions and therefore are more resilient and not as susceptible to being stressed by other factors, other than the wind impacts and/or lower than average light levels.
- Provide a diversity of species in very tough locations, so that if one species struggles, others may still prevail and then provide greater protection for the ones not performing. These may then improve with the increased shelter.

Most studies regarding trees and wind have been on wind as a damaging agent during storms, windthow of trees, and branch breakage. Some studies have observed that wind or other mechanical perturbations typically increase stem radial growth and retard stem, branch and leaf elongation (Jacobs 1954, Neel & Harris 1971, Jaffe 1973, Telewski & Jaffe 1986a,b - see Stokes 1994). In wind-stressed gymnosperms extra wood and reaction wood form on the lee side of the tree (Larson 1965, see Boyd 1977 - see Stokes 1994), which corrects the deflection of the stem. The plant is therefore more likely to stand upright. Telewski (1993) has found that plants do not respond to continuous wind in the same way as when the wind is applied and stopped periodically; far greater responses occur when plants are stressed over several intervals rather than continuously.

It is important to note that most trees develop in environments that are exposed variously to winds. All trees will generally respond to various environmental factors, including wind. Wind is an important aspect for all trees and they are usually well placed to deal with even strong winds. Typically wind action induces developmental changes in a trees' physiology - generally resulting in a more compact form, with increased stem taper, shorter branches and smaller leaves. It also induces changes in root morphology, as often root mass and root branching are increased on the windward sides to improve anchorage. There is no significant physiological change in plants with wind speeds less than 1-2m/s. Affects from wind on trees, however, will increase in magnitude and severity the greater the wind velocity that is regularly experienced by the tree. How a trees growth and health are affected by winds will be heavily influenced by:

- The frequency, period and length of time of the wind actions.
- The time of year the winds are experienced (deciduous trees have much lower wind resistance and are dormant in winter).
- Gusts/ wind speed / direction (is the wind constant from one direction, or is it multi-directional, or is it a downdraft?).
- Turbulence that is created by surrounding structures and existing trees.

The response of any individual trees will therefore be greatly dictated by:

- whether the wind is from a primary direction or from a variety of sides. (uni-lateral or multi-lateral)
- the species of tree conifer vs angiosperm wood is applied on the opposite sides of the stems due to force depending on whether it is an gymnosperm or an angiosperm. This is presumably why conifers are better at staying upright in constantly windy environments as they apply wood on the leeward side which forces the tree to be upright. (eg *Araucaria sp., Pinus sp.*)
- Age or maturity of the tree.
- Size of tree, both at installation and then at maturity.
- Size of leaves.
- Strength and physical mechanical properties of the wood. (all trees are different in this respect)
- Its intrinsic and genetic predisposition to growing in windy environments.

In practice there is no precise wind speed limits or targets that can be realistically and definitively applied to the tree planting. The following points, however, outline some guiding principles.

- Trees are naturally adapted to wind prone environments.
- Some exposure to wind can actually be good for trees, changing their morphology to create more stability and greater root development.
- In particularly wind prone areas, designers should avoid choosing trees with large or easily-damaged leaves or those are known to have brittle branch structures.
- Trees should be planed in appropriately considered and spaced groupings, with a variety of ages and sizes to maximise dispersion of wind and creation of multi-directional turbulence.
- Good soils and root environments often greatly help trees survive better if they are placed under artificially windy conditions.
- Attempts should be made to protect smaller and younger trees from excessive winds using existing larger trees or other architectural devices or deflectors.

Trees that often respond well to windy conditions typically have:

- Naturally stronger and dense wood production.
- Strong, and well attached, but flexible branches.
- Good spreading root systems or a 'tap root' oriented system with lateral and sinker roots. (eg. Araucaria)

Some of the species specifically mentioned in current literature that are good at dealing with windy environments, and that are relevant to this project include:

- Araucaria sp. (Cook Pine, Norfolk Island Pine, Hoop Pine)
- Acacia binervia (Coastal Myall)
- Lagerstroemia sp. (Crepe Myrtle)
- Magnolia grandiflora (Bull-bay Magnolia)
- Ficus rubiginosa (Port Jackson Fig)
- Banksia integrifolia (Coastal Banksia)
- Cupaniopsis anacardioides (Tuckeroo)
- Tristaniopsis laurina (Water Gum) (the straight species, not the 'Luscious' cultivar)

A list of the preferred proposed tree species is provide in Appendix 6.2. It is considered that enough scope exists within that listing to choose suitable trees that will tolerate the variety conditions likely to be faced in Waterloo Estate. The above favoured species are all listed in the recommended tree species for Waterloo South.

4.4 Proposed Tree Species and Forest Composition

To address many of the key policy documents and the design outcome and 'place making' directions for the precinct, it is proposed to incorporate a relatively large range of species into the final designs. This will increase resilience and diversity and work towards the CoS targets of no more than 40% in any one family, 30% in any one genus, and 10% in any one species. It will also help achieve a diversity of sizes with a target of 10% small trees, 45% medium, 35% large trees and 10% civic scale (extra large). Consideration should be given to incorporating species that currently prosper in slightly warmer climates to cater for climate change. (eg. *Caesalpinia ferrea, Harpullia pendula, Araucaria cunninghamii, A. heterophylla and A. columnaris*) (refer Figure 4.6).

It is recommended that some exotic deciduous trees be utilised for better solar access during cooler months, particularly to lower apartments and key retail areas (refer Figure 4.5). It will be necessary to carefully consider any further large-scale introduction of species from the Myrtaceae family as the current population is already above the target of 40% for this family. Given the general dominance of this family throughout Australia, this may always be difficult to fully achieve and some compromises of this target may inevitably be required.

Although detailed species selection can not be done at this high level phase, a proposed species palette is included as an appendix to this report. The selection of proposed new tree species being used throughout the Waterloo precincts must consider many factors and must aim to be a balanced approach that considers:

- Basic suitability for a dense urban area fruiting, forms, failure risk, bark and leaf shedding, hardiness, proven performance and reliability in an urban context.
- Intrinsic contribution to canopy coverage overall size and canopy spread and shade density.
- Known pest and disease tolerance and susceptibility.

- Tree management and maintenance requirements of both the CoS and LAHC.
- Spread of different sizes preference for medium to large trees wherever they are possible and suitable to the positions able to be provided.
- Overall forest composition and species diversity.
- Tree architecture and aesthetics.
- Solar access a mixture of deciduous and evergreen species will always be required.
- Allergy and irritation considerations.
- Tolerance to wind and overshadowing from surrounding tall buildings.
- Commercial availability and nursery sizing and production practicality.

Figure 4.4 – Leopard Tree (Caesalpinia ferrea) is a common and successful tree in the warmer parts of NSW and Qld. It has been successfully used as a street tree and grows well in Sydney in frost free areas. As part of our climate change adaptation it will be very sensible to look to species such as this to grace the streets and parks within the Waterloo Estate (Photo: Arterra)

4.5 **Proposed New Tree Planting Strategies**

The following points outline the broad strategies that are currently recommended for adoption throughout the Waterloo South Precinct.

- Utilise **large civic-scale trees** such as Figs, Araucarias, Eucalypts and Agathis to provide signature and landmark trees at key visual points and to allow trees to be seen out of windows even many storeys above the ground level. This will also assist in achieving the CoS targets for extra large tree sizes (refer Figure 4.6).
- Incorporate trees into the upper levels of the future built forms and podiums and on roof tops to improve canopy coverage and increase peoples' connection to nature and greenery. The urban design teams should explore opportunities for **community orchard style planting** in semi-public open spaces/ roof terraces and podiums to provide urban food and community engagement with trees. This is not recommended in very public or major street contexts where maintenance, access and ownership issues often prove difficult to manage and should not detract from more important factors such as shade provision. (Refer Figure 4.7)
- Consider the much increased use of in-road planting (blisters and medians) that provide opportunities
 to move trees away from existing or future below ground services and future building facades and allow
 them to fully develop their canopies and ultimate sizes. This is also the best way to fully shade street
 pavements and parked cars and achieve the stated canopy coverage targets. The urban design teams and
 engineers should consider utilising structural soil systems and vaulted tree pit designs to allow soil volumes
 for vigorous and healthy tree growth in the long term, and under the required pavements. This also serves
 to calm traffic and improves the general perceptions and use of the street environment. (Refer Figure 4.5)

Figure 4.5 – Japanese Zelkova (Zelkova serrata 'Green Vase') is a common and successful tree in numerous and varied urban centres around the world including Sydney and Melbourne. It has been successfully used as a street tree and grows well in Sydney. This tree will provide many benefits with a similar form and character to the now much over-used London Plane tree. (Photo: Arterra)

Figure 4.6 Species such as Araucaria cunninghamii (Hoop Pine) and Araucaria columnaris (New Caledonia Pine) grow well in Sydney and are particularly well suited to the sandy soil conditions present at Waterloo. They will also be very tolerant of issues associated with climate change. They also provide trees that will be in keeping with the scale of the proposed tower developments. They will offer important screening and way-finding benefits. Their foliage will also be visible many storeys above the street. (Photo: Arterra)

- Utilise generous **kerbside setbacks of trees** to allow planting of larger trees suitably away from street kerbs and associated infrastructure. Designers should always consider the ultimate tree sizes.
- Utilise some generous **building setback zones** near the streets to allow planting and retention of larger trees away from street kerbs and footpaths. Building setbacks from some street frontages will help ensure the retention of existing street and other trees. Consideration has also been given to the building placement and provision of setback zones when in close proximity to the existing large Figs such as on the corner of Pitt and Phillip Street and Pitt and Cope Street and along Wellington Street.

Figure 4.7 – Good opportunity exists to provide productive landscapes and tree planting on the semi-public and controlled access areas of the raised tower podiums. These on-structure environments with good solar access provide the perfect arena for small scale and mixed orchard style tree planting that will offer not only amenity but facilitate locally sourced food and community based activity (Photo: Arterra)

4.6 **Designing For Trees**

Trees are **long term assets** and investments that may live for between 50 to 150 years, so species selection is vitally important. In contrast, most residents will only occupy their houses, on average, for a 5-15 year period.

Trees must be given the necessary requirements to sustain life - that is, space, air, water, nutrients, light and soil. To survive all trees must grow, and in doing so will inevitably shed leaves, bark, fruit, flowers and even branches. Their roots will grow and their trunks will expand. The challenge is to select the right tree for the right location within the urban context that maximises the benefits and minimises the negative impacts to residents, infrastructure and road users. Careful planning, innovative design solutions and compromise are always needed when considering trees in a busy and densely populated, urban environment.

Don't over plant for only short term or instant effects. A measured approach to planting should always be adopted to allow future trees to mature with full and symmetrical canopies wherever possible. This generally makes the trees easier to manage in the long term, with better health and the ability to replace them more easily when the time comes. Such forethought often gives the trees more ability to seek adequate resources rather than unnecessarily completing with each other, above and below ground.

One of the key roles of streets is to convey vehicles, pedestrians and utility services throughout the community. While there is often opportunity for tree planting as well, this is not so in all cases. It must be remembered that poor and or inappropriate tree planting may actually detract from a street's function and residents' enjoyment, and potentially create a serious burden on tree management resources both now, and well into the future.

Tree species must be selected so that the ultimate mature size of the tree canopy is appropriate to the particular street or space available and gives appropriate consideration to the site constraints, such as verge width, building and awning alignments and vehicle clearances.

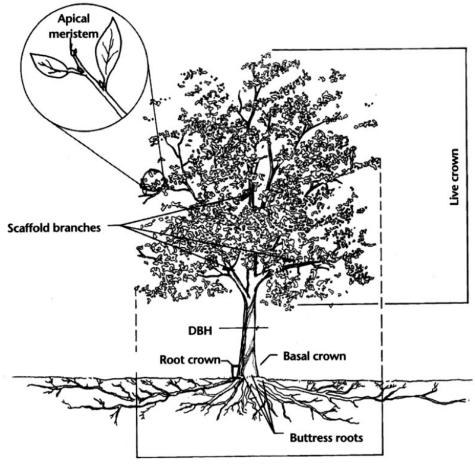
Some of the key considerations will be:

- Street profile designs that accommodate and focus on trees as a key component of the infrastructure.
- Street orientations with care to allow solar access to nearby residents and parks using exotic deciduous trees where appropriate.
- Street hierarchy that utilises species selections and signature trees to define key nodes and help define street hierarchy and way-finding.
- Verge and reduced carriage way widths to help reduce the perceived width of road carriage ways to slow and calm traffic through appropriate and measured use of median and blister positioned tree planting.
- Integration of trees within parking lanes.
- Integration of tree planting areas and tree pit design within the bio-retention (rain-garden) and other water quality treatment strategies.
- Undergrounding of power lines to avoid the need for any future clearance pruning.
- Building, basement and street setbacks and provision of deep soil areas. Provide the space for large trees particularly between tall buildings and within the public areas. This will help alleviate the visual impact and de-humanising influence of very tall towers.
- Street level gardens to provide interest and delight at street level but also accommodating the provision of wider and longer trees pits and spaces for tree trunks to grow and expand without damage to surrounding infrastructure.

Blister planting can allow tree planting to occur where verges are otherwise too narrow and where there would otherwise be no trees at all in a street. In such instances, they may not have to be regularly or closely spaced, as even a few trees can make a huge difference to how a narrow street or laneway looks and feels, reducing the apparent width of the road carriageway, calming traffic and providing a more aesthetically pleasing and 'liveable' street. This also allows trees to be planted further away from nearby urban developments and residential apartments.

4.6.1 Soil Volumes for Sustainable Tree Growth

Tree growth and fertility are strongly influenced by soil structure, as it affects the movement of air, water and nutrients for trees to flourish. Well-constructed soil functions like a reservoir, enabling trees to accept store and transmit water, nutrients and energy and provide room for roots to propagate. (Carpani, 2016, Lindsey and Bassuk, 1991)


Tree roots typically grow in a shallow and wide plate-like arrangement (Refer Figure 4.8). They do this to maintain appropriate access to water, nutrients and most importantly oxygen. It is therefore more appropriate to provide wide and shallow rooting areas for all new trees. Tree pits with depths greater than 1.2m will typically be wasted as the tree will rarely access soil at these lower depths. This is particularly relevant for the soils associated with the Estate as the water table is quite shallow and trees will not develop roots within saturated soil. Tree pit design shall typically be required to achieve the minimum soil volumes specifies below and have available minimum soil depths of 0.7m. The typical maximum depth of soil that should be calculated is 1.2m.

The typical methods to achieve required tree soil volumes include such systems as:

- Providing large open soil areas such as grass or garden areas surrounding the tree.
- Vaulted soil pits where pavements surrounding the trees are suspended above the tree pit soils via suspended and reinforced concrete sub-pavements and piers and/or beams.
- Structurally supportive systems such as Strata vault and Strata Cells.
- Structurally supportive soils (specifically designed and manufactured aggregate and soil mixes).

The opportunity exists for these systems to be utilised, where necessary, within the Estate during detailed design.

Any new trees should ideally be located within designated gardens or planting areas with sufficient space around the base of the trunk to allow for proper ultimate expansion of the trunk, root flare and structural root zones. Trees should typically be planted at least 1.5 - 2.0m away from any walls, buildings or pavement edges, and even further for larger trees.

Dripline

Figure 4.8 – Typical form and structure of a tree illustrating the typical form, location and extent of root growth (Source: Matheny and Clark, 1998)

If planted within a paved area, the tree should be planted within a well-designed and designated tree pit with sufficient soil volumes and drainage to prevent excessive infrastructure damage or premature tree failure and poor conditions in the future. When planting new trees within pavement areas or restricted areas the soil volume should be to sufficient to enable the tree to reach its mature size in a healthy full state. To survive indefinitely a mature tree requires a minimum of 0.6m3 of soil for every m2 of projected canopy area. As a guide, for trees that are likely to achieve the following canopy spreads, they should be provided with the following soil volumes:-

- 4m spread needs approx. 8-10m3 of soil
- 6m spread needs approx. 20-25m3 of soil
- 8m spread needs approx. 30-40m3 of soil
- 10m spread needs approx. 50-70m3 of soil

The above guidance is in a normal street / landscape setting. The needs per tree can be marginally reduced if the trees can share soil volume with other adjoining trees or if the soil is subject to regular irrigation. In order to provide these volumes it may be necessary to consider the following strategies:-

- Use of expanded sized tree pits / planting areas
- Use of structural soil systems (structural soils or plastic support mechanisms)
- Use of 'vaulted' soil pits with pavement bridging over the root zones

An important consideration for the Estate, however, is the **naturally sandy soil** conditions that exist throughout the area. This means, that in terms of soil volumes, most trees that will be planted will have ready access to sufficient soil volumes for longer term growth. Unlike more constrained environments where rock or heavy or compacted sub-soils can radically inhibit tree root development, tree root growth below the roads and shallow pavements will not be as constrained in Waterloo. The above guidance with regard to soil volumes becomes much more pertinent to areas where the trees are over artificial structures or on raised podiums or where other major infrastructure or building basements may inhibit the available rooting volumes.

Figure 4.9 – Numerous methods are now available of integrating trees and the necessary soil volumes within urban environments while still allowing pavements and roads to continue successfully above. The above illustrates the proprietary system Strata Vault by Citygreen being used at Barangaroo Sydney.

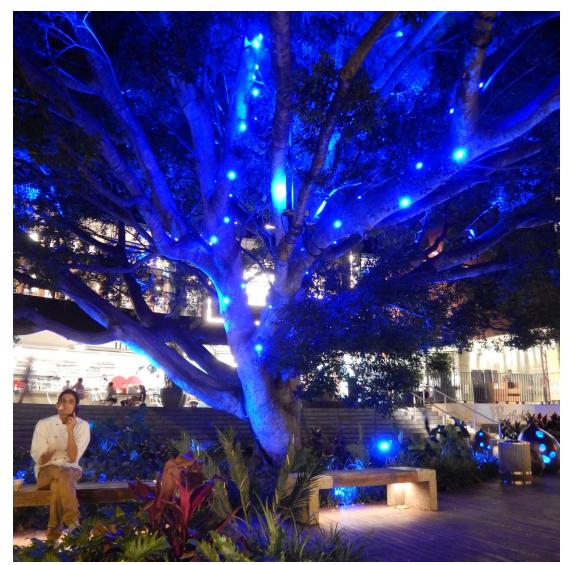
It is critical that all new trees are planted at the correct depth with any new soil and mulch carefully placed and allowing the top of the pre-existing root flare to just remain visible.

For trees planted within grassed areas, the base of the trunks should be surrounded with a minimum 3m diameter of recycled hardwood coarsely chipped mulch. This prevents the otherwise avoidable impacts to the trunk and root flare from mower and line trimmer damage. It is important the mulch is not too deep and is of a free draining nature. Excessively thick mulches or very organic mulches can become hydrophobic and actually prevent water from reaching the soil zone or introduce unwanted pathogens to the soil or tree.

4.7 Community Engagement and Education

An equally important component of the Urban Forest Strategy for Waterloo is to also ensure that the proponents of the development educate the community and promote the benefits of the urban forest. It will be important that as part of the ongoing implementation of this long term development that the following are achieved:

- Promotion of the value of urban forestry.
- Key stakeholder awareness of the importance of the urban forest initiatives.
- Encouragement of community stewardship of the urban forest.


Some of the suggested ways this community outcome could be achieved include:

- Investigate and support grants for community engagement and stakeholder collaborative projects such as community gardens, bush tucker gardens and orchards (for research and tree planting).
- Organise awareness strategies such as "Great Tree Hunts" to look for significant trees or commemorative trees.
- Provide brochures and information within public information centres.
- Collaborate with universities and local schools on research and involvement in urban forest studies. Particularly health and wellbeing indicators to benchmark the role of urban forests in contributing to human health over long term studies.
- Ensure proper records are maintained for all private area tree planting (what species, numbers and sizes when installed). Insist on a Work as Executed drawing and schedule for all installed trees as the project progresses and maintain a centralised repository of information.

Waterloo South Precinct Planning Proposal | Urban Forest Study - 24/3/2020

Figure 4.10 – Examples of some of the methods for encouraging community interaction and support for the urban forest including sculptural installations that celebrate trees, utilising material from former trees, and highlighting their morphology and spiritual connections. (Photo: Arterra)

Figure 4.11 – Trees themselves can be the frame for temporary artworks and lighting displays that can highlight the beauty, size and majesty of trees in the urban context. (Photo: Arterra)

- Undertake annual resident workshops to educate community about the local trees and conduct precinct tours.
- Utilise community tree planting days and celebrations.
- Organise 'Urban Forest' exhibitions that focus on ideas and artistic reflections of the trees and the urban forest (eg. non-destructive/injurious sculptural installations within trees, feature lighting of trees, and photographic exhibitions of trees within the precinct).
- Celebrity presentations and demonstration of gardens and urban forest planting (eg. ABC Gardening Australia hosts and specials)
- Create outreach and education strategies such as:
 - Flyers / Brochure
 - Educational field trips for local schools
- Provide a mulch delivery service to relevant local community groups of pruned or removed tree material to promote urban forestry and educate community on the benefits and lifecycle of trees.
- Investigate a community "Adopt a Tree" program
- Investigate opportunity for citizen training programs (pruning and maintenance) eg. in NYC an exam qualifies residents to legally look after street trees (with some excluded areas). Volunteer groups receive work assignments and suggest further projects. 'Citizen Pruners' meet with Council to review tasks and receive training.

5. ASSESSMENT OF EXISTING TREE IMPACTS AND URBAN FOREST OUTCOMES

5.0 Overview

Why wait 30-40 years for shade and other benefits to develop when a mature tree already exists in the landscape. If there are existing trees that are healthy, stable and well placed, the primary objective shall be to preserve them.

The assessment of the tree related impacts and proposed protection measures within this document is 'high level' and put forward to assist with the appropriate assessment and approval of the Waterloo South Indicative Concept Proposal. It also provides over arching guidance to future consultants and developers who may be responsible for the more detailed and site specific designs.

The realisation of the Indicative Concept Proposal is considered to take at least 15-20 years to complete. It is, therefore, anticipated and expected that a more detailed and very site specific assessment of the existing trees identified to be retained as part of this overall assessment will be carried out and lodged with all detailed and site specific development applications. It is important to note that trees are dynamic and living organisms and changes in their condition over time or relatively small changes to the proposed layouts or methods of construction may have significantly lesser or greater impacts on individual trees.

It is also important to note that the removal of the trees will occur over an extended time frame. Not all the proposed removals will occur at one time. Trees listed for removal in later stages may remain in place for many years. Likewise, new planting will be undertaken progressively, so new trees should be starting to mature and provide replacement canopy, aesthetic and other ecosystem services by the time the later stage trees are being removed. Currently, all trees that were identified with low or very low retention values as part of the baseline studies have been calculated as being removed, so that desirable development outcomes are not unnecessarily restricted by trees that are poor quality, very small or otherwise insignificant.

5.1 Existing Trees – Retention and Removal

The proposed construction of the Waterloo South buildings and infrastructure will result in a major site disturbance. It is therefore necessary to remove many of the trees that currently exist. The design team have worked very hard to focus on the retention of the more important trees including:

- The identified high and moderate retention value trees;
- The significant Fig trees within Mt Carmel/ Waterloo Park adjoining Pitt Street and Reeve Street;
- The larger and prominent Fig trees on Wellington Street and
- The mixed Eucalypt street trees along the eastern side of Cope Street and much of southern George Street.

There are **939** trees which have been assessed in the wider Estate or which **551** are located within the Waterloo South Precinct. The following information specifically addresses the trees and relevant statistics as they relate to the Waterloo South Precinct only. The trees in the Waterloo Central or North Precinct are not addressed as part of this commentary. The existing **551** trees in Waterloo South comprise **251** High and Moderate retention value trees, and **130** are currently being retained. There are **421** trees that are proposed to be removed, the majority of which are Low or Very Low retention value trees. Trees that are removed will be replaced with new, appropriately scaled and positioned trees as part of the staged development.

The following table summarises the trees to be removed and retained compared with their relative retention values. Refer also to the detailed schedules in Appendix 6.1 and plans in 6.3 for the location and graphical representation of these trees.

Tree Disposition	Totals	High Retention Value	Moderate Retention Value	Low Retention Value	Very Low Retention Value
Trees anticipated to be retained and protected	130	45 (52%)	85 (52%)	0	0
Trees to be removed as they are within the footprint of the proposed buildings or other major streetscape or landscape works, or they were assessed as Low or Very Low retention value	421	42 (48%)	79 (48%)	285 (100%)	15 (100%)
Trees proposed to be transplanted	-	-	-	-	-
Totals	551	87	164	285	15

Table 13 Tree Disposition Versus Their Retention Value

5.2 Managing Tree Impacts and Proposed Tree Protection Measures

Any future tree protection measures to be imposed as part of the development of the Estate cannot be fully explored in detail until the exact nature and extent of the building and infrastructure development is fully known. The following broad guidelines, however, are given as an indication of the likely measures that would be required to protect the tree assets, as the designs are progressed.

The proposed construction of the roads, buildings and high-rise developments would result in major site disturbances. This would potentially have a significant impact on the trees within and adjacent to these buildings, roads and other civil works. Specifically the proposed development will involve:

- Major demolition works;
- Use of large scale civil work, piling rigs and earth moving equipment;
- Access to and from the construction sites with large trucks and construction plant;
- Excavations for the upgrading and placement of new road profiles;
- Excavations for the creation of improved tree planting soil profiles;
- Large stockpiles/ storage of construction materials;
- Re-grading and filling of the surface levels;
- Major services upgrades and associated infrastructure works;
- Use of large cranes;
- Parking for site personnel and deliveries;
- New roads, paving and retaining walls and
- Landscaping and new tree planting.

Given the high level nature of the Concept proposals all that has been able to be calculated and assumed at present is that:

- All Low and Very Low retention value trees will be removed;
- All trees that **fall within currently anticipated buildings** or new street footprints or in known areas likely to be re-graded or affected by major services installation have been shown removed;
- Attempts have been made to focus on retaining and protecting high retention value trees;
- Due to the scale of developments, the 130 trees identified for retention are **all likely to be impacted** to various degrees by surrounding construction or infrastructure works. Specific efforts and measures must be put in place to minimise root loss and other impacts as the future developments proceed;
- **Detailed arboricultural impact assessments** will be required for each site specific site development application. All reasonable attempts must be made to retain and protect the trees that are currently identified for retention. Minor incursions (<10%) will be accepted. For any major encroachments (above or

below ground, as per AS4970) it will normally be expected that much more site specific investigations will be carried out by a qualified Consulting Arborist (AQF5) and submitted as part of any detailed Development Application, to verify and hopefully support the retention of the tree(s); and

• As part of the above, professional and thorough **tree protection measures must be applied** and rigorously enforced for all trees proposed to be retained, throughout the demolition and construction process.

5.2.1 Design and Realistic Expectations

The best tree protection measure is to consider the retention and physical requirements of the trees to be retained during the detailed design stages. Most importantly a tree to be retained should be given the appropriate space to continue to grow below ground, and above ground, and continue to develop new growth and prosper for many years to come. As much as possible, all work, including trenching, building construction and landscaping should be avoided within the identified TPZ limits. The TPZ radius of all trees are identified in Appendix 6.1.

The site planning, as part of the current Indicative Concept proposal, attempts to protect important and larger trees through the use of appropriate deep soil setback zones which are identified in the Indicative Concept plans. Where an incursion is required to an existing tree and the design cannot be modified or amended, the amount of disturbance and incursion must be limited and appropriate compensatory areas applied and protected elsewhere and contiguous to the remaining TPZ around the tree(s).

Where adequate protection is not possible, or is unlikely or unable to be rigorously defended, then serious thought should be given to removing the tree and ultimately replacing it with new and advanced size tree planting at the completion of the development. This is preferable to wasting a lot of time, resources and development energy on retaining a tree that will almost inevitably decline and die.

5.2.2 Services Upgrades and Installations

Apart from physical road and building construction, services installation and upgrades are likely to have the next greatest impact on the trees and tree retention. There will be a need to very carefully consider the location and extent of all trenching, particularly for major service upgrades.

There may need to be **consideration given to service re-alignments or under-boring** techniques to manage impacts to important existing trees currently identified to be retained.

Most existing electrical power is currently provided by overhead cabling. The redevelopment of the Waterloo South precinct will typically involve the **undergrounding of all electrical power lines and communication cables.** This should only be done with due consideration to existing trees that are planned to be retained. Trenching past large and very well established trees, with traditional methods, could have very significant impacts on tree health. This is particularly relevant to the retention of the existing large Fig and Eucalypt trees on George Street and Wellington Street.

Typically new services that are likely to impact the trees are to be under-bored, where practicable, thereby minimising incursion to any retained trees' root zones (wherever a new service is to be run through a nominated TPZ). Alternatively new services are to be located within the central portion of the existing road reserve to maximise the distance away from any existing street trees.

5.2.3 Soils, Excavation and Demolition

In naturally sandy soils, such as those found within the Waterloo South precinct, trees often develop extensive root systems, spreading wide and potentially growing deeply, to provide structural stability and maintain adequate nutrient and water uptake. Normal assumptions about structures and pavements inhibiting or deflecting roots can not be automatically applied.

- **Sandy soils** and tree roots. The sandy soil typically allows deeper aeration, and therefore root development at greater depths. Therefore it is possible, and very likely, that roots have travelled large distances away from the trees and under existing pavements and structures.
- The **extensive root systems** can be clearly seen, particularly in the vicinity of the many large Figs, Plane Trees and Melaleucas. Very large roots are clearly visible on the ground surface, often wrapped around exposed building infrastructure and then disappearing under nearby footpaths and driveways.
- **Demolition**. The normal premise that roots may have been inhibited by retaining walls and road pavements

does not apply in this area and it is highly likely that roots will be found in relatively radial patterns around the trees and even under adjoining structures and roadways. This will make demolition of existing structures particularly difficult when close to existing trees. In some instances, existing infrastructure may need to be partially retained close to the trees to ensure trees are not disturbed and they remain structurally stable.

- Exploratory, non-destructive root Investigations Where necessary it will be expected that during detailed designs, developers will undertake exploratory and non-destructive root mapping and investigations (ie: using air spades, water jets or hand excavation) for all large or significant trees to verify location of any major roots and to guide final pavement levels and subgrade preparations. This will be particularly required where major incursions are proposed into any nominated TPZ areas or structures are proposed to be installed anywhere within Structural Root Zone areas (SRZ).
- Construction period management. The non-cohesive soil structure also has implications for construction work in the vicinity of trees. Stable batters will be difficult to construct and shoring or piling will be required to retain any excavations and maintain the structural integrity of the soil surrounding the trees' root systems, if the existing trees are to be successfully retained. All excavations undertaken near mature trees are to be undertaken and retained using suitable sheet, soldier or contiguous piling techniques to prevent excessive battering into tree root zones. On the positive side, soil compaction or waterlogging caused by construction activities will be less of a concern.

5.2.4 Tree Protection Fencing and Definition of TPZs

Prior to any works, including demolition, a clearly defined tree protection zone must be established. At a broad level, these have been defined in Figure 5.4 "Tree Protection Zone Plan". Demarcation of this shall typically be via a 1.8m high temporary fence with either plywood hoarding or temporary steel mesh or chain wire fencing with adequate lateral bracing. Fencing shall comply with the requirements of AS 4687-2007 Temporary fencing and hoardings. These areas around the trees shall be clearly delineated as a "Tree Protection Zone" during the remaining construction process, via appropriate weatherproof signage. Access shall typically be excluded from these zones and the ground levels will be left largely at the existing levels with the exception of the installation of new topsoils (where approved) and 75mm of mulch. No stockpiling, excavation, trenching, re-fuelling or material storage shall be allowed in these areas.

If any construction work is required with in a TPZ, this work should be done with small tracked equipment or by hand, with care to limit damage and disturbance of the root zone. All works within TPZ zones must be witnessed and directly overseen by a qualified (AQF5) consulting arborist.

5.2.5 Ground Protection within TPZs

Vehicular movement and access shall typically not be required or approved through the TPZ areas. If it is absolutely necessary and it is proposed to create any access or haul road, or similar, within the TPZ of a retained tree, the Contractors shall install rumble strips / boards over the TPZ ground surface. No excavation shall be allowed. The Contractor shall first place a suitable permeable geotextile to the extent required and then a 100mm thick layer of wood chip mulch or coarse no-fines gravel over the extent to be covered with the rumble strip / boards. They shall then place hardwood boards (minimum 3600 x 200 x 75mm) on their flat edge, side by side, with a 30 - 50mm gap to form a rumble strip. These boards are to be held together with galvanised metal bracing straps nailed to each board. The two outer straps are to be approximately 200mm in from the ends of the boards. A third strap is to be along the centre line of the boards.

5.2.6 Trunk and Lower Branch Protection

A trunk protection barrier is to be erected around the circumference of any tree trunk, trunk flare and root buttress where indicated on relevant consulting arborist plans, especially when equipment or vehicles have to pass close to the tree. This barrier shall consist of a double layer of suitable 'used' artificial grass matting, carpet or carpet underfelt placed around the trunk. A layer of battens is to be placed over the underfelt. The battens are to have a maximum spacing of 50-100mm. The height of the battens is to be 2.4 metres or to the height of the first branches. Lower large branches may require the same protection if they are likely to be damaged by passing vehicles or equipment. Secure in place with galvanised steel bracing straps. Do not nail into or otherwise injure the underlying trunk or bark. Battens may be made from any suitable waste timber of similar sizes and depths. All sharp or protruding edges are to be properly covered with tape or similar padding.

Figure 5.1 – Example of appropriate TPZ mulching, tree protection and construction fencing (Photo: Arterra)

Figure 5.2 – Example of a temporary trunk protection (L) and ground protection (R) to be installed during construction periods. This can be a very valuable way of ensuring tree health and preventing accidental trunk damage and compaction of ground or disturbance of roots when work is undertaken close to trees. (Photo: Arterra)

5.2.7 Temporary Irrigation Systems During Construction for Key Trees

The provision of supplementary irrigation is very beneficial to sustain good tree health while construction activities are undertaken, particularly given the permeability of the soil and its naturally poor water-holding capacity. A temporary and automated (battery powered timer is sufficient) watering system is to be typically placed within TPZs to maintain adequate water to the retained trees and help maintain and even improve their health and condition. This shall be a simple surface mounted hose and/or surface sprinkler system. It is to be visible and spray delivered so that its operation can be easily visible and verified. It should be on a designated supply line, separate from all other construction related water supplies to minimise its likelihood of being disconnected. Typically, during

spring and summer months it should be set to run for a minimum of 30 minutes every day, in the early morning. During, autumn and winter months it should be set to run for 1 hour once every week. The operation can be suspended temporarily in periods of extensive and prolonged rain. The system is to remain in place for the duration of civil and major construction, or until a suitable Consulting Arborist approves its removal. It may be removed to allow final landscape treatments to proceed. If accidentally disturbed or damaged by construction activities, it is to be reinstated as soon as practicable.

Figure 5.3 – Example of a temporary irrigation system provided to trees during construction periods. This can be a very valuable way of ensuring tree health and vitality is maintained and also promote new fibrous root growth closer to the trees. (Photo: Arterra)

5.2.8 Controlled Construction Access and Parking

Construction access points, stockpiling and storage areas must be clearly identified and fenced where appropriate. Uncontrolled access points and parking of vehicles outside of designated areas is to be avoided. If temporary access is required through a tree protection zone, ground protection shall be employed to limit soil compaction and root damage and disturbance as per 5.2.5.

5.2.9 Clearing and Removal of Existing Trees to be Removed

Removal and clearing of existing trees within 15m of existing trees to be retained shall only be done by qualified arboricultural personnel with care not to impact or damage other surrounding trees throughout the process. Existing stumps should be ground out in a controlled fashion to remove wood that may decay and promote unwanted pathogens.

5.2.10 Communication - Tool Box Meetings and Construction Inductions

All contractors and subcontractors should be inducted prior to working on the site. All inductions should include description and identification of the Tree Protection Zones and the restriction on work and activities with regard to trees. The site foreman shall ensure that all new staff and contractors are appropriately inducted and that brief "tool box" meetings are conducted daily to ensure Tree Protection is maintained at the forefront of all construction workers' minds.

Legend

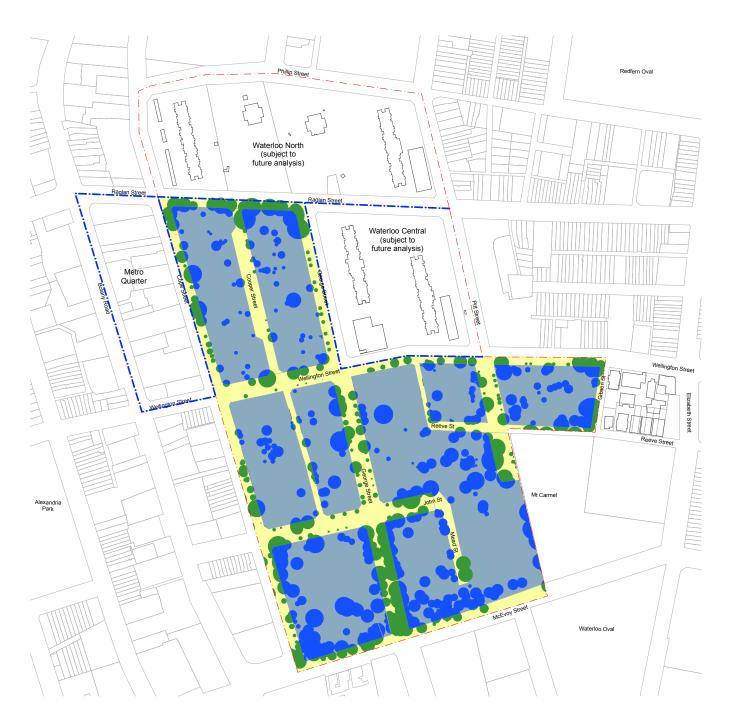
cita							
	Precinct boundary - Waterloo Estate						
	Sub Precinct boundary - Metro Quarter boundary						
	Existing Cadastre						
\bigcirc	Existing Tree to be Retained & Protect						
	Proposed Construction Period Tree Protection Zones	\bigcirc	0 	40	100	200m	

Figure 5.4 – Map of the Estate illustrating the retained existing trees and the proposed Construction period "Tree Protection Zone Plan" . (Source: Arterra)

5.3 Analysis of Key Urban Forest Performance Measures and Targets

The principle objectives for the Waterloo Estate, that relate to the urban forest initiatives, are to create a safe welcoming and healthy place to live, high quality public spaces, and a sustainable and adaptable urban environment. The objectives for the urban forest, therefore, are to:

- Maximise tree canopy coverage.
- Provide a resilient, healthy and diverse urban forest.
- Provide an integrated and systematic long-term strategy that promotes trees as critical infrastructure and assets.
- Retain and protect existing trees.
- Educate the community and promote the benefits of the urban forest.
- Undertake appropriate and targeted additional tree planting to meet CoS and industry best practice targets.


The targets that are considered particularly relevant in achieving these objectives and that can be measured at this phase of the project are outlined in the table below. (Refer also to Figure 5.5, 5.6 and Appendix 6.2)

Urban Forest Consideration	Baseline Condition	CoS or Other Target	Proposed Designed Solution Waterloo South	Compliance/ Trend Comment
Canopy Coverage Overall	29%	27%	42.4%	Target exceeded
<u>Canopy Coverage</u> Street Parks Private	38% 0% 25%	50% 25% 25%	59.8% 59.0% 20.0%	Target exceeded Target exceeded Acceptable (if overall still met)
Existing Trees Identified for Retention High Value Trees Moderate Value Trees	-	50% 50%	52% 52%	Adequate outcome given size of development and the need to meet numerous other urban design outcomes
<u>Species Diversity</u> Family Genus Species	47% 19% 8%	40% 30% 10%	40-45% 20-30% <10%	Close to target likely Target likely to be achieved Target likely to be achieved
<u>Size Class</u> Civic Large Medium Small	10% 27% 44% 19%	10% 35% 45% 10%	6-8% 30-35% 40-45% 10-15%	Likely slightly less than target Target likely to be achieved Target likely to be achieved Likely slightly more than target
Ecological Contribution / Diversity Naturally Endemic Sydney Region Australian Native Exotic Weed/Non-desirable	18% 56% 23% 3%	- - -	20-25% 50-55% 20-25% -	Acceptable Balance Acceptable Balance Acceptable Balance Desired

Table 14 Comparison of Key Performance Indicators

5.3.1 Canopy Coverage

Most pleasingly, and importantly, is the ability for Waterloo South to achieve and exceed the canopy coverage targets for the **overall** precinct. The street area canopy coverage is currently calculated at 59.8% which is well over the target figure of 50%. It is the author's opinion that with continued appropriate tree selection and road profile detailing at future design stages the 50% canopy coverage to streets will be exceeded. It is also noted that the Park areas will easily exceed the CoS 25% canopy coverage. It is our recommendation that the more aspirational target of a minimum of **46%** canopy coverage be adopted for the Park areas.

Legend

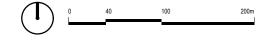
- --- Precinct boundary Estate
- --- Sub-Precinct boundary/Metro Quarter boundary

Cadastre

	Site Area	Total Area	Canopy Extent	Canopy Type	Canopy Coverage	% of Area
	Park	0m2		Park	0m2	0%
	Private	88,528m2		Private	22,372m2	25.3%
	Street	34,823m2		Street	13,293m2	38.2%
	Total	123,351m2		Total	35,665m2	28.9%

Note:-Site area calculations include immediately adjoining streets up to the Estate Precinct and Waterloo South Precinct boundary and excludes Metro Quarter/Waterloo North and Central

Figure 5.5 – Map of the Estate illustrating the existing trees and their relative contribution to canopy coverage . (Source: Arterra)


Legend

- --- Precinct boundary Estate
- --- Sub-Precinct boundary/Metro Quarter boundary

Cadastre

	Total	123,351m2		Total	51,568m2	42.4%	-
	Street	40,978m2		Street	24,506m2	19.9%	59.8%
	Private	53,207m2		Private	**10,641m2	8.6%	20%
	Park	29,166m2		Park	17,204m2	13.9%	59.0%
	Area	Total Area	Canopy Extent	Canopy Type	Canopy Coverage	% of Total Area	% of Relative Area

** Private area is an assumed area with imposition of a DCP provision requiring a minimum of 20% projected 'tree' canopy cover at ground or building podium level over all private portions of land Note:-Site area calculations include immediately adjoining streets up to the Estate Precinct and Waterloo South Precinct boundary and excludes Metro Quarter/Waterloo North and Central

Figure 5.6 – Map of the Estate illustrating the retained existing trees together with a conservative estimate of the proposed trees and their potential contribution to ultimate canopy coverage when mature. (Source: Arterra)

Given the high density and highly urbanised development that is being proposed it is likely that the CoS target for 25% canopy coverage to private areas will not be met in many instances. At present we have calculated the canopy coverage of private areas based on a **notional 20%** canopy coverage. This should be calculated on m2 of projected canopy, regardless of whether it is on the ground levels or on the elevated portions of the buildings. If this 20% canopy is achieved in the private areas, then the overall canopy coverage for private areas be accepted and mandated within the relevant DCP provisions. This together with the contribution of green roofs and other shrub and groundcover planting areas on the podium levels of new buildings should further boost the overall urban greening. The extent of this other supplementary planting is currently unknown and therefore cannot be commented on definitively.

5.3.2 Species Diversity

The high level nature of the current concepts means that the actual species diversity can not be precisely measured or commented on. It is the intention of the concept proposals to develop a diverse and appropriate mix of plants within the redevelopment. The selection of the new trees is intended to ultimately:

- Provide a mix of species that is culturally appropriate and respects the strong association with Aboriginal heritage.
- Provide a mix of trees that are robust, long lived with acceptable maintenance regimes that, most importantly, actively contribute to canopy coverage and urban shading and cooling.
- Install tree species that are appropriate to their positions and are well suited to use in streets and highly used urban areas.
- Minimise the reliance on the Myrtaceae Family to acceptable levels, ideally closer to 40%, but certainly no more than 50% of the total trees being planted belonging to the above Family.
- Contribute to an acceptable balance of locally endemic, native and exotic trees, recognising that exotic trees will still play very valuable roles for urban shading and winter sun and providing trees that provide appropriate scales and wind tolerance in relation to the proposed tall towers and likely wind tunnel affects.
- Contribute to productive landscapes, but not at the expense of canopy coverage or meeting the maintenance requirements of the CoS for public area trees.

There is likely to remain a heavy reliance on Myrtaceae family, which is very common throughout Australian cities and is reflective of the proposed street tree species that are desired under the current CoS street master plan and the extensive Eucalyptus and Corymbia species that already existing along Cope and George Street. The diversity achieved from proposed replenishment planting across the Southern Precinct should moderate the figures towards the desired outcome. In the author's opinion it is ultimately more important that the right type of tree is proposed for each given urban situation, microclimate and the spaces available and provided.

Minimal capacity exists for 'extensive' use of endemic trees in the South Precinct, as they are potentially unsuitable for heavily used, highly urban spaces within fully paved and tower environments. In the author's opinion the selection of proposed trees as provided in Appendix 6.2 is balanced and appropriate and should form the basis for the majority of tree selections. The diversity for the overall Estate should ultimately trend towards the desired population-wide outcome for the City.

5.3.3 Tree Size

There is a likely to be a general reliance on small to medium sized trees, which is reflective of the spaces and type of landscapes and streets and laneways to be created around the South Precinct. Capacity certainly exists for the more extensive use of larger civic-scaled trees in parts of the precinct, particularly in the Parks and the wider streets. The dominance of medium sized trees compared to small trees is welcome and preferred. Again, in the author's opinion, it is more important to ensure the right type of tree is proposed for the given urban situation and spaces provided. We continue to recommend that efforts are applied to placement of civic-scaled (extra large trees) such as Figs, Agathis and Araucarias and some of the larger Eucalypts at key nodes and focal points around the precinct during detailed designs. This will aid in the street canopy coverage and compliance with CoS targets for larger tree sizes.

5.4 Suitability of Proposed and Suggested Tree Species

The relatively simplistic public domain plans currently prepared as part of the Indicative Concept Proposal have been reviewed. It appears there will be a range of tree species proposed and provided throughout the redevelopment. There is a selection of proposed trees provided within Appendix 6.2 which should form the basis for all new tree planting within the public and semi-public areas. They are considered generally appropriate to the normal constraints and conditions likely to be imposed by the local urban surroundings and will positively contribute to the implementation of the objectives of the UFS and the wider Estate. All new tree planting must still be considered with relation to the individual microclimatic, spatial and soil conditions expected around each development.

Specifically the proposed species put forward are considered appropriate for the following reasons:

- There is a range of species that provide both deciduous and evergreen trees.
- They are all hardy proven performers within the local urban context.
- The species generally comply and align with the CoS Street Tree Master Plan 2015 but we recommend that there be some additional diversity provided to the streets for civic, place making and cultural purpose.
- Some deciduous trees are recommended for solar access during the cooler months which should be applied to some parts of the public open spaces, streets and to northern or western sides of buildings. They may also facilitate seasonal views to important buildings or other features.
- It provides a balanced approach to diversity with a dominance of trees native to the NSW coastal region with *Corymbia* and *Angophora sp.* likely to provide a strong correlation with the other species along Cope & George Street as well as spring flowering nectar food sources for native fauna and insects.
- It provides trees that provide reliable shading and canopy coverage with a large proportion of the trees providing excellent shade and evapotranspiration rates that will help mitigate urban heat island effects (eg. Lophostemon confertus, Waterhousea floribunda, Syzygium paniculatum and Harpullia pendula).

Any future detailed designs should be expected and enforced to generally align with the proposed species selections, the proposed road setbacks and horizontal spacings, unless otherwise agreed by the CoS.

5.5 Proposed DCP Provisions Relating to Urban Forest

The following are the proposed Urban Forest DCP provisions that should be adopted for the South Precinct. Many of these will also contribute to the realisation of other objectives and requirements.

- 1. Any existing trees identified and proposed to be retained are to be assessed and then protected as per the requirements outlined in the Australian Standard 4970 Protection of Trees on Development Sites.
- 2. Overhead power lines and communication cables are to be undergrounded within all streets servicing the Precinct to remove the current conflict between overhead cabling and existing and proposed trees. If existing trees occur within the planned undergrounding routes then mitigation measures shall be employed to avoid incursions into the tree(s) calculated Tree Protection Zones, as defined under Australian Standard 4970 Protection of Trees on Development Sites. Where this cannot be reasonably accommodated, alternative methods of construction should be used such as under-boring, directional drilling or non-destructive trenching to install the cabling without impact to the trees' health or stability.
- 3. A minimum of 20% projected canopy coverage shall be achieved for all private land (non-public) developments. This shall be measured as the projected square metre canopy from the trees using reasonable estimates of the mature size of the chosen trees. Coverage may include trees planted at ground level as well as any trees planted in upper levels of buildings, such as podiums. It may also include any canopy overhanging from an adjoining public domain area. A tree shall be as defined by CoS LEP.
- 4. A minimum of 50% projected canopy coverage shall be achieved for all streets and laneways, unless it can be clearly demonstrated that it is unreasonable to meet this requirement from an urban design outcome and only in a specific instance.
- 5. A minimum of 46% projected canopy coverage shall be achieved for all parks.
- 6. Tree species selection for the public domain shall be as per the proposed tree species list contained in Appendix 6.2. Small trees shall only be used where it is unreasonable to install a larger tree. This is to avoid the use of small trees where the space clearly exists for a larger tree to be planted.
- 7. Planting throughout the Precinct shall typically aim for a balance of tree sizes with the following proportion of trees, by number:
 - 10% civic (extra large trees) (ie. greater than 25m in spread and/or height)
 - 35% large trees (ie. greater then 15m in spread and height)

- 45% medium trees (ie. greater than 10m in spread and height)
- 10% small trees (ie. less than 10m in spread and height)
- 8. When planted within a potentially constrained soil environment (eg. on-structure or where other subsurface conditions would be expected to constrain root development and available rooting volumes) all trees are to be planted in accordance with the soil volume requirements contained within Section 4.6.1 of the Waterloo Estate Urban Forest Study.
- 9. New street trees to be planted where possible a minimum of 800mm from the face of adjoining road kerbs or parking lanes with a distance of 1000-1200mm preferred.

5.6 New Tree Planting

5.6.1 Planting Program and Timing

The implementation of any new tree planting needs to be carefully planned and considered. This will involve the critical elements below:

- The quality and species of the trees planted;
- The size at which they are planted; and
- The way they are physically planted and cared for in the first few weeks and months.

The following outlines the **minimum** requirements that should be adopted for all new tree planting within the Estate.

- All new street tree planting shall be a minimum of 200L container sizes with this increased to 400L for the key feature trees being preferred. Sizes of >800L should be considered where suitable and quality advanced stock is available.
- All trees shall be grown to the minimum standards of AS2303 2015 Tree Stock For Landscape Use with certification provided by the supplying nurseries. Trees shall be true to type and the species and cultivars specified.
- Tree planting ideally should be undertaken in either Autumn or Winter. This will greatly increase the success of the planting and reduce the establishment maintenance burdens.
- Soil volumes provided shall be consistent with the requirements for the size and species of the tree as outlined in this document.
- Surrounding pavements and any installed tree grates shall allow for proper expansion of the trees base over time.
- Trees should be planted a minimum of 800mm from the back of adjoining kerbs. Distances greater than 1000mm are preferred.
- Trees shall be transported, lifted and planted in a manner that limits any possibility of physical damage.
- Trees shall be regularly maintained for a minimum of 24 months from the date of planting to ensure adequate establishment maintenance. This is to include pest and disease monitoring and control, watering and timely replacement of any failed trees, if required.

5.6.2 Tree Stock Quality and Sourcing

Considerable effort and resources can be spent in planting new trees. This considerable effort can be wasted if the tree dies shortly after planting, or if the tree is supplied in a substandard form or condition that may ultimately lead to poor performance or the later development of serious structural defects and poor health. As outlined by authors such as Gilman (Gilman 2012), most tree defects that occur in mature trees were present and identifiable at the time a tree was initially planted. It is therefore essential that the tree and its roots be in optimal condition when delivered and planted.

An important aspect of the planting implementation is in the planning and procurement of nursery stock. Implementing a 'forward-thinking' and pre-planned approach to plant procurement has numerous benefits, which include:

- Securing favourable contract growing prices.
- Ability to prepare and coordinate planting at optimum times of the year.
- Ability to purchase trees of the required species and cultivars.
- Ability to purchase trees of the required sizes and dimensions and formatively pruned to suit street tree installation.
- Assurance of the required quantities, including allowance for replacements when necessary.
- Ability to inspect and demand high quality stock, free of above and below ground defects.

In summary, all trees should be sourced and supplied as part of an advanced plant supply contract with one or more reputable commercial suppliers and they shall conform to the NATSPEC "Guide for assessing the quality of and purchasing of landscape trees" by Ross Clark 2003 and AS AS2303 – 2015 Tree Stock For Landscape Use.

5.6.3 Early Establishment and Maintenance

Most defects that lead to tree problems and failures are present in the tree upon delivery from the nursery and the planting. If stock is properly sourced, as noted above, most of the issues noted below should not present themselves. For example:-

- 1. Included branches
- 2. Co-dominant or tri-dominant stems
- 3. Congested branching architecture
- 4. Crossing and rubbing branches
- 5. Leans

If these issues do occur, however, they are to be properly managed through formative pruning. At an early age these problems seem insignificant and unimportant. The tree, branches and defects are relatively small. These branches however are often the trunks and branches that are the major branches of the tree when it matures and as it grows so do the size of the trunks and these branches. A 50mm branch today will be the 200mm branch in 10 years' time. Branches are typically at the same point in the tree in the future as they are when young. Plants elongate from the ends, and the early trunks and stems just expand in girth, they do not move upwards in the tree. That is, if the tree currently has a major branch at 1.5m high, that major branch will always be emanating from about 1.5m high on the tree. When it is small that may not be an issue, but when the tree is mature this may not be desirable for clearances under the tree.

Defects, where present, can become more serious if left untreated as the tree matures. The size of the tree will typically increase and the damage to persons or property, if failure occurs, may become more significant. When a tree is mature the ability to rectify some of these defects can also become substantially more difficult and costly. It may also involve removing potentially very large branches or trunks, a lot of foliage and pruning into heartwood, thereby leaving substantial wounds that the tree expends substantial reserves trying to compensate for and seal around.

Formative pruning, although straightforward in theory, does require individual assessment and decisions based on each trees' specific needs. It is both 'art' and 'science' and should be conducted only by an experienced arboricultural professional and in line with AS4373 Pruning of Amenity Trees. Experiences from professionals such as Gilman indicate that in some younger trees foliage removal in the order of 40-50% is not an unacceptable figure and may be necessary in achieving the longer term desired outcomes.

5.7 References

- Australian Bureau of Meteorology Climatic Statistics Sydney http://www.bom.gov.au/climate/averages/ tables/cw_066047.shtml (Accessed16/11/2017)
- Benson, D and Howell, J 1995, Taken for granted the bushland of Sydney and its suburbs, Kangaroo Press in association with the Royal Botanic Gardens Sydney, Kenthurst, NSW.
- Carpani, Shane, 2016, "Health Benefits of Urban Trees" Arborist News Vol25 No.3 pp22-25.
- Chapman, G.A and Murphy, C.L 1989, Soil landscapes of the Sydney 1:100 000 Sheet Report, Soil Conservation Service of NSW, Sydney, NSW.
- City of Melbourne/Victorian Dept. Environment, Land, Water and Planning How to grow an urban forest
- CoS -Streets Code
- CoS Development Control Plan 2012
- CoS -Public Domain Manual
- CoS -Landscape Code 2016
- CoS -Greening Sydney Plan 2012
- CoS -Urban Forest Strategy 2013
- CoS -Tree Management Policy 2013
- CoS -Street Tree Master Plan 2015
- CoS -Environmental Action 2016-2021 Strategy and Action Plan (Draft endorsed March 2017)
- Ferrini, F, Konijnendijk van den Bosch, C.C, Fini, A. (Editors), 2017, Routledge Handbook of Urban Forestry, Routledge, London, UK.
- Gilman, E.F 2012, An illustrated guide to pruning (Third Ed.), Delmar Cengage Learning, New York, USA.
- Green Building Council of Australia, 2010. Green Star Communities National Framework
- Harris, R.W, Clark, J.R and Matheny, Nelda P, 1999, Arboriculture: Integrated management of landscape trees, shrubs and vines. 3rd Ed. Prentice Hall. New Jersey, US
- Human Dimensions of Urban Forestry and Urban Greening Kathleen L. Wolf, Ph.D. http://www. naturewithin.info/ (accessed 15/5/2011)
- Lindsey, Patricia and Bassuk, Nina 1991, "Specifying Soil Volumes to Meet the Water Needs of Mature Urban Trees and Trees in Containers" Journal of Arboriculture, Volume 17, No. 6 pp 141 149.
- Low Carbon Living CRC Guide to Urban Cooling Strategies (July 2017)
- Matheny, Nelda P and Clark J.R, 1998, Trees and development a technical guide to preservation of trees during land development, International Society of Arboriculture, Illinois, US.
- National Green Infrastructure Network-Urban Ecology : Theory Policy and Practice in NSW (May 2017)
- NSW Government Architects Office -The Green Grid-creating Sydney's open space network
- NSW Government Architects Office (Draft) Greener Places (Oct 2017)
- North Sydney Council, 2010. North Sydney Urban Forest Strategy
- Pollon, Frances 1998, The book of Sydney suburbs, HarperCollins Publishers, Sydney, NSW.
- Roberts, J. Jackson, N. and Smith, M. 2006. Tree roots in the built environment. No.8 Research for Amenity Trees, Dept. for Communities and Local Government, London.
- Ryder C.M. and Moore G.M. 2013. "The arboricultural and economic benefits of formative pruning street trees" Journal of Arboriculture, Volume 39, No. 1 pp 17 24.
- Schwab, James C. (Ed). 2009, Planning the urban Forest: Ecology, economy and Community Development, American Planning Association Planning Advisory Services Report No.555.
- Standards Australia, 2007, AS 4373-2007 Pruning of amenity trees. Standards Australia, Sydney.
- Standards Australia, 2009, AS 4970-2009 Protection of Trees on Development Sites. Standards Australia, Sydney.
- Standards Australia, 2007, AS 4687-2007 Temporary fencing and hoardings. Standards Australia, Sydney.
- Stokes, Alexia, 1994, Response of Young Trees to Wind: Effects on Root Architecture and Anchorage Strength, Doctorate thesis submitted Department of Biology, University of York, UK.
- Telewski, F.W, 1993, Wind induced physiological and developmental responses in trees. (Within Wind and Wind Related Damage to Trees (Eds. J. Grace & M.P Coutts, 1995) Cambridge University Press Cambridge, UK.
- Transport NSW Cycling Future 2013, Walking Future 2013
- The Nature Conservancy Washington Outside our Doors (2016)
- Trees and Design Action Group No trees, no future : trees in the urban realm (Nov 2008)

6. APPENDICES

6.1 Schedule of Existing Trees

250	249	248	247	240	040	245	244	243	242	241	270	240	220	220	237	300	235	234	233	232	231	220	220	228	227	226	225	224	223	222	221	220	219	218	117	247	216	215	214	213	212	211	210	209	208	207	206	205	204	203	Tree II	D
c	С	c	c	c	,	c	с	С	c	c		0	- -	- -	- -	>	c	c	0	0			r	c	c	c	c	c	c	c	c	c	c	c				c	c	c	0	c	c	c	С	С	c	c	c	c	rreanct	Drocinct
Jacaranda mimosifolia	Ficus benjamina	Casuarina glauca	Casuarina glauca	r none rritor coupled the , ratio	Fine microcana var hilli	Melaleuca quinquenervia		Melaleuca quinquenervia	Melaleuca quinquenervia	Melaleuca ouimuanervia	Melaleuca quinquenervia	Malalarina milimiananzia	Melaleuca quinquenervia	Casuarina glauca	Casuarina glauca	Cellis sinensis	Populus nigra 'Italica'	Populus nigra 'Italica'	Populus niora 'Italica'	Melaleuca quinquenervia	Ficus microcapa var. hilli	Hous microcapa var. niilii		Malalauna minnuanania	Melaleuca quinquenervia	Melaleuca quinquenervia	Melaleuca quinquenervia	menanerica dunidinense via	Atrocarpus racatus	Afrocarpus falcatus	Afrocarpus falcatus	Eucalyptus botryoides	Casuarina curninghamiana	Casuarina cunninghamiara	Casuarina cunninghamiana	Casuarina curminghamiana	Casuarina cunninghamiana	Casuanina curninghamiana	The species	Trop Opposing												
Jacaranda	Weeping Fig	Swamp She-Oak	Swamp She-Oak	- Burdense	Hills Weening Fig	Broad Leafed Paperbark		Broad Leafed Paperbark	Broad Leafed Paperbark	Broad Leafed Paperbark	Broad Leafed Paperbark	Broad Leafed Danerhark	Broad Leafed Paperbark	Swamp She-Oak	Swamp She-Oak	Chinese Hackberry	Lombardy Poplar	Lombardy Poplar	Lombardy Poplar	Broad Leafed Paperbark	Broad Leafed Paperbark	Broad Leafed Paperbark	Broad Leated Paperbark	Broad Leafed Paperbark	Hills Weeping Fig	Hills Weeping Fig		Broad Leafed Panerback	Broad Leafed Paperbark	Broad Leafed Paperbark	Broad Leafed Paperbark	bioad Leated F aperbaik	Outeniqua Yellow-wood	Outeniqua Yellow-wood	Outeniqua Yellow-wood	Bangalay	River She-Oak		Common Namo													
BIGNONIACEAE	MORACEAE	CASUARINACEAE	CASUARINACEAE		MORACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE		MYRTACEAE	MYRTACEAE			MYRTACEAE	MYRTACEAE	CASUARINACEAE	CASUARINACEAE	ULMACAEAE	SALICACEAE	SALICACEAE	SALICACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRIACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MORACEAE	MURAUEAE		MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE		PODOCARPACEAE	PODOCARPACEAE	PODOCARPACEAE	MYRTACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	ramiy	Emile
	12.0					14.0	18.0	18.0	18.0			14.0			14.0		10.0			18.0	20.0		20.0	16.0	16.0	16.0	16.0	16.0	18.0		18.0	18.0					18.0	18.0	18.0		12.0				12.0			12.0	12.0	12.0	Height (m	
0.20	0.70	0.40	0.60	0.10	0.40	0.20	0.50	0.50	0.50	0.70		0.40	0.40	0.40	0.30	280	0.20	0.50	0.50	0.40	0.30	0.30	0.30	0.30	0.50	0.60	0.20	0.50	0.50	0.70	0.40	0.30	0.70	0.70	0.00	0.30	0.70	0.40	0.30	0.75	0.50	0.30	0.30	0.20	0.20	0.20	0.20	0.20	0.20	0.20	Diameter at Breast Height b (dbh) (m)	
0.20	0.70	0.50	0.70	0.10	0.40	0.20	0.70	0.70	0.70	0.80		0.50	0.50	0.50	0.40	080	0.20	0.60	0.60	0.40	0.30	0.30	0.30	0.40	0.70	0.70	0.20	0.60	0.60	0.80	0.50	0.40	0.80	0.80	0.10	0 40	0.70	0.40	0.30	0.75	0.50	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	Diameter at base (dgl) (m)	Trunk
200	8.40	4.80	7.20	4.00	8	2.40	6.00	6.00	6.00	8.40	1.00	4.80	4.00	1 200	3 60	000	2.40	6.00	6.00	4.80	360	3 60	380	3.60	6.00	7.20	2.40	6.00	6.00	8.40	4.80	3.60	8.40	8.40	3.00	3 60	840	4.80	3.60	4.80	6.00	3.60	3.60	2.40	2.40	2.40	2.40	2.40	2.40	2.40	(m) 12xdbh (AS 4970)	Nominal
2	2.85	2.47	2.85	C7.7	2	1.68	2.85	2.85	2.85	3.01	r H	247	2.41	2 V C	0.01	2	1.68	2.67	2.67	2.25	200	200	3	2.25	2.85	2.85	1.68	2.67	2.67	3.01	2.47	2.25	3.01	3.01	C7.7		285	2.25	2.00	CZ.2	2.47	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	SRZ radius (m) (AS 4970)	Nominal
Consi moli mo	Mature	Mature	Mature	The second	Maturo	Mature	Mature	Mature	Mature	Mature		Mature	Mature	Mature	Mature	Maturo	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	The second	Mature	Mature	Mature	Mature	mature	Sem-mature	Semi-mature	Semi-mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Age Class	
	Good	Good	Good	-	Fair	Fair	Fair	Fair	Fair	Good		Fair	Good	Good	Fair	Good	Moribund	Fair	Good	Good	Poor	Poor	Poor	Good	Good	Good	Good	Good	Good	Fair	Fair	Fair	Good	Good) - -	Fair	Fair	Fair	Fair	T all				Good	Fair	Fair	Fair	Fair	Fair	Fair	Current Vigou	ır
D	Good	Good	Good		Poor	Poor	Poor	Poor	Poor	Good		Poor	Average	Average	Average	Aviorano.		Average	Good	Good	Poor	Poor	Poor	Poor	Average	Average	Poor	Average	Average	Average	Average	Poor	Poor	Poor	 -	Poor	Poor	Poor	Poor	Ē	Average	Average	Average	Average	Average	Average	Average	Average	Average	Average	Current Form	n
Very Asymmetric Canny		Excessively Pruned		tog nogimiene owned	Ven/ Asymmetric Can		Very Asymmetric Canopy	Very Asymmetric Canopy	Very Asymmetric Canopy			Very Asymmetric Canopy												Very Asymmetric Canopy			Very Asymmetric Canopy			Major Inclusions		Very Asymmetric Canopy, Major Inclusions	Very Asymmetric Canopy	Very Asymmetric Canopy							Major Inclusions										Defects	Notod
Me	Long (>40 years)	Long (>40 years)	Long (>40 years)		_	Medium (15-40 years)	py Medium (15-40 years)	py Medium (15-40 years)	py Medium (15-40 years)				Long (>40 years)	Long (>40 years)	Long (>40 years)	I om />40 years)	Remove (<5 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Short (5-15 years)	Short (5-15 years)	Short (5-15 years)		Long (>40 years)	Long (>40 years)	py Long (>40 years)		Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	~			l om (>40 veas)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	Luig (~40 yeas)	Long (>40 years)	Lorg (>40 years)	Lorg (>40 years)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)		
Low	Moderate	Moderate	High	101	nw	V Low / Remove	Low	Low	Low	Moderate		Low	Moderate	Moderate	Moderate	Moderate	V Low / Remove	Moderate	High	Low	Low	Low	Low	Low	Moderate	Moderate	Low	Moderate	Moderate	Low	Low	Low	Moderate	Moderate		Moderate	Moderate	Moderate	Moderate	modelate	Moderate	Moderate	Moderate	Moderate	Low	Low	Low	Low	Low	Low	Retention Value	e
																	No.																Moderate as group but low individually	Moderate as group but low individually	individually.	Individually. Moderate as proup but I new if retained	Moderate as group but Low if retained	Moderate as group but Low if retained	Moderate as group but Low if retained individually.	individually.	Maalaaala oo waxaa lad I aa if aadalaaal											Conoral Commonts and Notos
Exotic Medium	Exotic Large	Endemic Medium			Native Civic	Endemic Medium	Endemic Medium	Endemic Medium	Endemic Medium			Endemic Medium			Endemic Medium		Endemic Medium			œ			Exotic Medium	Endemic Medium	Endemic Medium	Endemic Medium	Endemic Medium			Endemic Medium	Endemic Medium	Endemic Medium		Native Civic	ş		Endemic Medium	Endemic Medium	Endemic Medium	E NOTING MELIUIT				Endemic Large	Native Medium	Native Medium			Native Medium	Native Medium	Origin Tree Size	Troo
Deciduous	Evergreen	Evergreen	Evergreen	LTOB	Evenneen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen		Evergreen	Evergreen	Everareen	Evergreen	Evenneen	Evergreen	Evergreen	Evergreen	Deciduous	Deciduous	Deciduous	Deciduous	Evergreen	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergræn	E vergræn	1 LTCIGIOU	Everareen	Evergreen	Evergreen	Evergreen	r veigiœii	Coniter	Conifer	Conifer	Evergræn	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen	Evergreen		H N
Remove	Remove	Remove	Remove	1 NOTION	Remove	Remove	Remove	Remove	Remove	Remove		Remove	Remove	Remove	Remove	Panovia	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Kemove		Remove	Remove	Remove	Remove		Retain	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Recommendation	

12481	12479	12478	12476	12465	338	337	2000 7000	336	335	334	333	332	331	330	329	328	327	326	325	324	323	321	320	319	318	317	316	315	314	313	317	310	309	308	307	305	304	303	302	5	204	299	298	297	296	295	Tre
c	c	С	С	c	, c	~		C	c	c	c	С	c	c	с	c	С	С	c	0	n r	0	c	С	C	0	c	c	c	0	n n	, c	0	С	0	n n	0	с С	0		- -	n n	0	0	c	c	,
Hobinia pseudbacacia 'Frisia'	Robinia pseudoacacia 'Frisia'	Agonis flexuosa	Robinia pseudbacacia 'Frisia'	Hooma pseucoacacia Frisia	Casuanna curnungnamana	Costanina caning annana	Casuanna cuminnhamiana	Casuarina cunninghamiana	Casuarina curninghamiana	Casuarina cunninghamiana	Casuanna cunninghamiana	Ficus rubiginosa	Eucalyptus plularis	Eucalyptus plularis	Casuarina cunninghamiana	Casuarina cunninghamiana	Casuarina curninghamiana	Olea europaea subsp. europea	Afrocarpus falcatus	Afrocarpus falcatus	Afrocarpus falcatus	Olea europaea subsp. europea	Olea europaea subsp. europea	Afrocarpus falcatus	Arrocarpus racatus	Afrocarpus falcatus	Olea europaea subsp. europea	Olea europaea subsp. europea	Melaleuca quinquenervia	Melaleuca quinquenervia	Melaleuca quinquenervia	Angophora costata	Pittosporum undulatum	Archontophoenix cunninghamiana	Phoenix canariensis	Casuanna cuminohamiana	Casuarina curninghamiana	Casuanna curninghamiana	Casuarina curninghamiana		Eucalyntus niularis	Arrocarpus racatus	Afrocapus racatus	Ficus microcapa var. hilli		ricus microcalpa var. mini	
Black Locust	Black Locust	Willow Myrtle	Black Locust	Black Locust	Kiver Sne-Oak		Biver She-Oak	River She-Oak	River She-Oak	River She-Oak	River She-Oak	Port Jackson Fig	Blackbutt	Blackbutt	River She-Oak	River She-Oak	River She-Oak	European Olive	Outeniqua Yellow-wood	Outeniqua Yellow-wood	Outeniqua Yellow-wood	European Olive	European Olive	Outeniqua Yellow-wood	Outeniqua reilow-wood	Outeniqua Yellow-wood	European Olive	European Olive	Broad Leafed Paperbark	Broad Leafed Paperbark	Broad Leafed Paperbark	Broad Leafed Deperherk	Sweet Pittosporum	Bangalow Palm	Canary Island Date Palm	River She-Oak	River She-Oak	River She-Oak	River She-Oak	2	Blackbutt	Outeniqua Yellow-wood Blackhutt	Outeniqua Yellow-wood	Hills Weeping Fig	Hills Weeping Fig	uilis weeping rig	Tril_ WTest
FABACEAE	FABACEAE	MYRTACEAE	FABACEAE	FABAUEAE	CASUAKINACEAE		CASIIADINACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	MORACEAE	MYRTACEAE	MYRTACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	OLEACEAE	PODOCARPACEAE	PODOCARPACEAE	PODOCARPACEAE	OLEACEAE	OLEACEAE	PODOCARPACEAE	PUDUUARPAUEAE	PODOCARPACEAE	OLEACEAE	OLEACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRIACEAE	PITTOSPORACEAE	ARECACEAE	ARECACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE		MYRTACEAE	MYRTACEAE	PODOCARPACEAE	MORACEAE	MORACEAE	MORACEAE	
4.0	5.0	7.0	4.0	0.0	20.0	20.0	200	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	5.0	9.0	9.0	9.0	8.0	8.0	10.0	10.0	10.0	8.0	8.0	14.0	14.0	14.0	9.0	6.0	3.0	3.0	10.0	10.0	18.0	18.0		18.0	12.U	12.0	20.0	20.0	20.0	Heigh
0.10	0.15	0.60	0.05	0.30	.40		0	0.40	0.40	0.40	0.40	0.60	0.60	0.60	0.30	0.30	0.30	0.40	0.30	0.30	0.30	0.30	0.20	0.30	0.30	0.30	0.20	0.20	0.50	0.20	0.50	0.50	0.15	0.80	0.80	0.20	0.15	0.30	0.30	8	040	1 20	0.80	1.40	0.80	0.00	n) igh
0.10	0.20	0.60	0.05	0.40	0.50	0.00	0.50	0.50	0.50	0.50	0.50	0.70	0.70	0.70	0.40	0.40	0.40	0.50	0.40	0.40	0.40	0.50	0.20	0.40	0.40	0.40	0.30	0.30	0.60	0.20	0.60	0.30	0.20	0.90	0.90	0.20	0.20	0.40	0.40		0.50	1.10	1.10	1.50	1.10		1 10
2.00	2.00	7.20	2.00	3.60	4.80	4.00	1 00	480	4.80	4.80	4.80	7.20	7.20	7.20	3.60	3.60	3.60	4.80	3.60	3.60	3.60	3.60	2.40	3.60	3.60	3.60	2.40	2.40	6.00	2.40	6.00	3.60	2.00	9.60	9.60	2.40	2.00	3.60	3.60	4.00	1 80	9.60	9.60	15.00	9.60	9.60	23
1.26	1.68	2.67	0.94	2.72	247	241	1	2.47	2.47	2.47	2.47	2.85	2.85	2.85	2.25	2.25	2.25	2.47	2.25	225	2.25	2.47	1.68	2.25	c.72	225	2.00	2.00	2.67	1.68	267	200	1.68	3.17	3.17	1.00	1.68	2.25	2.25	147	0.01	3 23	3.44	3.92	3.44	3,44	0
Young	Semi-mature	Mature	Young	sem-mature	Mature	maturo	Matura	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Semi-mature	Semi-mature	Semi-mature	Mature	Mature	Semi-mature	Sem-mature	Semi-mature	Mature	Mature	Mature	Mature	Mature	Sem-mature	Semi-mature	Mature	Semi-mature	Mature	Mature	Mature	Mature		Mature	Mature	Mature	Mature	Mature	Mature	
Poor		Fair	Poor				Fair	Fair	Fair	Fair	Fair	Good	Good	Good	Good	Good	Good	Fair			Good	Good	Good	Ire Good	noon ar		Good	Good	Good	Good	Good		_	_		Fair	Fair	Fair	Fair	: ;	Fair	Good	6000	Good	Fair	r all	Current
Suppressed		Poor V	Suppressed V			. Avoiego	4.vierene	Average	Average	Average	Average			Good	Poor	Poor	Poor	Suppressed V	Poor		Average			Poor	1001	Average	Average		_		Average			Good	Average	Average F	_				Poor	Average	-		Average		Current
		Very Asymmetric Canopy	Very Asymmetric Canopy R												Very Asymmetric Canopy	Very Asymmetric Canopy	Very Asymmetric Canopy	Very Asymmetric Canopy	 -+					Very Asymmetric Canopy	very Asymmetric Caridpy	ani Asymmetric Canoni										Excessively Pruned	faior Inclusione	Excessively Pruned, Very, Asymmetric Canopy	Excessively Pruned		Verv Asymmetric Canony				Very Asymmetric Canopy	very Asymmetric Candy	A exponentio
Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Replaceable (Small/Young)		Long (>40 years)	Long (The young)		Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)		Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	" /~ Ah warm
Low	Low	Low	V Low / Remov	Low	Moderate	incusi ato	Moderate	Moderate	Moderate	Moderate	Moderate	High	High	High	Moderate	Moderate	Moderate	Low	Low	Low	Low	Low	Low	Low	LOW	Low	Low	Low	Moderate	Low	Moderate	Low	Low	Low	Low	Moderate	Moderate	Low	Low		Low	High	Moderate	High	Moderate	moderate	Retention
					Closely spaced grouping growing on top or nearby orib block retaining wall.	nearby arib block retaining wall.	nearby orib block retaining wall.	Closely spaced grouping growing on top of	Closely spaced grouping growing on top of nearby orib block retaining wall.	Closely spaced grouping growing on top of nearby orib block retaining wall.	Closely spaced grouping growing on top of nearby orib block retaining wall.			a comin na Siconfe	Closely spaced group. Moderate if retained retain as oroun	Closely spaced group. Moderate if retained retain as group.	Closely spaced group. Moderate if retained retain as group.																														
Exotic	Exotic	Native	Exotic	EXOLIC	Native	INCLUYE	Nation	Native	Native	Native	Native	Native	Endemic	Endemic	Native	Native	Native	Invasive	Exotic	Exotic	Exotic	Invasive	Invasive	Exotic	EXOLIC	Exotic	Invasive	Invasive	Endemic	Endemic	Endemic	Endemic	Native	Native	Exotic	Native	Native	Native	Native		Endemic	Exotic	Exotic	Native	Native	Native	Notico G
Medium	Medium	Medium	Medium	Medium	Medium	mount	Morlium	Medium	Medium	Medium	Medium	Large	Large	Large	Medium	Medium	Medium	Small	Large	Large	Large	Small	Small	Large	Large	Large	Small	Small	Medium	Medium	Medium	Large	Small	Small	Small	Medium	Medium	Medium	Medium		Laroe	Large	Large	Civic	Civic	CIVIC	
Deciduous	Deciduous	Evergreen	Deciduous	Decidious	Evergreen	- Lingigueri	Evention	Evergræn	Evergreen	Evergreen	Evergræn	Evergræn	Evergreen	Evergræn	Evergreen	Evergreen	Evergreen	Evergreen	Conifer	Conifer	Conifer	Evergreen	Evergreen	Conifer	Conner	Conifer	Evergreen	Evergreen	Evergræn	Evergreen	Evergræn	Evergreen	Evergreen	Palm-SingleStem	Palm-SingleStem	Evergreen	Evergreen	Evergreen	Evergreen	1	Everareen	Everareen	Conifer	Evergreen	Evergreen	пладаан	
Remove	Remove	Remove	Remove	Kemove	Kemove	T NOTING	Demoio	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Kelliove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Stem Remove		Remove	Remove	Remove	Remove		Remove	Retain	Remove	Retain	Remove	Relifique	7
																																															amprovide

32	31	30	29	28	27	C3	24	23	3	22	2	20	-19 19	8I.	11	i 16	: ;	15	14	tå i	3	± 7	1) 4	• ~	, ,	. o	, сл	4	ω	2	_	31968	31967	31966	15096	15095	15092		15089	1000	15084	13277	13276	13275	132/4	13273		13272	13271	13270	12485	12484	12482	Т
z	z	z	z	z	z	z	: z	: z	= :	zz	z	z	z	: 2	: z	z	: :	z	z	z	z	z	z 2	2 2	: z	: z	z	z	z	z	z	0	0	0	ი (c	c		۰ <i>د</i>	`	c	0	0	c	C	, ,		c	c	ი	С	n	c	
Callistemon wininalis cv.	Callistemon viminalis cv.	Callistemon viminalis cv.	Callistemon viminalis cv.	Brachychiton acerifolius	Eucalyptus robusta	monandurud annimaning	Adalatura amiliaria	Sugarus romanzoffiana	Syamic mmanzoffiana	Archontophoenix cunninghamiana	Archonfonhoenix cunninghamiar	Eucayptus boryoloes	Ficus microcape var. mil	Fina minorana wa hilii	Mondomia intermitation	Eucayptus roousta			Ficus microcapa var. hilli	Ficus microcama var. hilli	Casuarina cuminohamiana	Casuanna curnignamiara	Costantia cuminghamiana	Casuanna curningnamiana	Ficus microcaipa var. nilli	Eucalyptus robusta	Ficus microcapa var. hilli	Eucalyptus pipenta?	Robinia pseudoacacia 'Frisia'	Robinia pseudoacacia 'Frisia'	Robinia pseudoacacia	Tilstaniopsis laurina	Tristaniopsis laurina	Tristaniopsis laurina		Tristaniopsis laurina	Triofanioneie la mina	i instanuopsis launna	Laphostemon contertus	Laphostemon contertus	Laphostemon confertus	Edunosternon comentus	Tristaniopsis laurina	d d d d d d d d	Eucalyptus bdryoides	Eucalyptus bdryoides	Eucalyptus bdryoides	Robinia pseudoacacia 'Frisia'	Robinia pseudoacacia 'Frisia'	Robinia pseudbacacia 'Frisia'				
weeping Bottlebrush	Weeping Bottlebrush	Weeping Bottlebrush	Weeping Bottlebrush	Illawarra Flame Tree	Swamp Mahogany	bi acciet i toriey-iliyi de	Receipt Honournutio	Queen Palm		12 Bangalow Palm		Bangalay	Bancelav	Hillo Wooning Eig	Manadamia	Swamp Manogany	2	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	River She-Oak	Hille Wooning Ein	River She Oak	River She-Uak	Hills Weeping Fig	Swamp Mahogany	Hills Weeping Fig	Sydney Peppermint?	Black Locust	Black Locust	Black Locust	Water Gum	Water Gum	Water Gum		Water Gum	Water Cum	water Gum	Brush Box	Brush Box	Brush Box	Brush Box	Water Gum	5	Bangalay	Bangalay	Bangalay	Black Locust	Black Locust	Black Locust	
MTKIAUEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MALVACEAE	MYRTACEAE		MYDTACEAE	ARECACEAE	ARECACEAE	ARECACEAE	ARECACEAE	MTKIACEAE	MURACEAE	HOBACEAE	BEOTEACEAE	MYRIACEAE		MORACEAE	MORACEAE	MORACEAE	MORACEAE	MORACEAE	MORACEAE	CASUARINACEAE	MOBACEAE	CASUARINACEAE	CASUARINACEAE	MURACEAE	MYRTACEAE	MORACEAE	MYRTACEAE	FABACEAE	FABACEAE	FABACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE		MYRTACEAE	MYDTACEAE	MYRIACEAE	MYRIACEAE	MYRIACEAE	MYRTACEAE	MIKIACEAE	MYRTACEAE		MYRTACEAE	MYRTACEAE	MYRTACEAE	FABACEAE	FABACEAE	FABACEAE	
9.0	9.0	2.0	8.0	7.0	18.0	ç	80	10 O	80	7.0	60	0.61	10.0	100	80.0	15.0		18.0	18.0	18.0	18.0	18.0	18.0						15.0	15.0	15.0	4.0	5.0	5.0	5.0	5.0	8.0		8.0	2	/.0	5.0	6.0	6.0	0.0	5.0		21.0	18.0	17.0	5.0	4.0	8.0	Heig
00.0	0.20	0.15	0.50	0.20	0.80	0.770	0.20	0.20	0 20	0.20	0.20	0.50	0.50	4 00	0.70	0.30	2	1.40	1.20	1.20	0.90	1.20	1.20	0.30	0.30	0.20	0.40	0.70	0.30	1.00	0.30	0.05	0.10	0.10	0.15	0.10	0.30		0.40	3	0.30	0.20	0.20	0.15	0.20	0.40	5	0.80	0.70	0.70	0.10	0.10	0.30	(dbh) (m)
0.70	0.20	0.15	0.60	0.30	0.90	0.00	0.50	0.00	0.30	0.30	0.30	0.60	0.80	4 40	0.00	0.30	2	1.40	1.20	1.20	1.00	1.20	1.20	0.40	4 40	0.20	0.50	0.80	0.40	1.00	0.40	0.05	0.10	0.10	0.15	0.10	0.50		0.50	06.0	0.40	0.42	0.20	0.15	0.20	0.50	2	0.90	0.80	0.80	0.10	0.15	0.40	
7.20	2.40	2.00	6.00	2.40	9.60	4.00	2.40	2.40	2 I	240	3	6.00	14.40	2.40	8.40	3.60		15.00	14.40	14.40	10.80	14 40	14 40	3 60	3.60	2.40	4.80	8.40	3.60	12.00	3.60	2.00	2.00	200	2.00	2.00	3.60		4.80	2	3.60	2.40	2.40	2.00	2.40	4.80		9.60	8.40	8.40	2.00	2.00	3.60	(AS 4970)
2.85	1.68	1.49	2.67	2.00	3.17	241	200	200	3	200	3	2.67	3.81	1.00	3.01	2.00		3.81			-	-	272	3.44	2.25	1.68	2.47	3.01	2.25	3.31	2.25	0.94	1.26	1.26	1.49	1.26	2.47		2.47	8	2.25	1.85	1.68	1.49	1.68	2.47		3.17	3.01	3.01	1.26	1.49	2.25	4970)
Mature	Mature	Mature	Mature	Semi-mature	Mature	maturo	Matura	Matura	Matura	Mature	Mature	Mature	Mature	Moture	Matura	Mature		Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Moturo	Mature	Mature	Mature	Mature	Mature	Young	Young	Young	Semi-mature	Semi-mature	Mature		Mature	Matura	Mature	Sem-mature	Semi-mature	Semi-mature	Mature	Mature		Mature	Mature	Mature	Semi-mature	Young	Mature	Age
6000		Poor			Fair	g		-	Good	Good	Fair	rair	Excellent	Eurollow	Gua			Fair	Good	Good	-	_	Good	Fair	Fair	rall	Fair		-	Good	Good		-			ıre Fair	Good		Fair	Door	Poor				rair	Fair	1	Good	Fair	Fair		Fair	Fair	Current
Average		Suppressed	Average		Poor	ŝ	1.	-		Average	Average	Poor	+		-			Average				Average		Poor	Poor		Poor					Average	Average	Average	Suppressed	Good	Suppressed		Suppressed	Cimmon	Suppressed	Good			ouppressed	Average		Average	Good	Average	Average	Average	Poor	Currer
	-	ed Excessively Pruned			Very Asymmetric Canopy		_					Canopy, Excessively	Van Asymmetric																	-	-	-			<u>z</u>		ed Excessively Pruned, Very Asymmetric Canopy	Asymmetric Canopy	xd Excessively Pruned, Very		ed Very Asymmetric Canopy, Excessively			4		1		Excessively Pruned, Very Asymmetric Canopy		-	1	-	Very Asymmetric Canopy	
Medium (15-40 years)	Medium (15-40 years)	Short (5-15 years)	Medium (15-40 years)	Lorg (>40 years)	Medium (15-40 years)			Modium (15-40 years)	Marfiim (15.40 years)	Medium (15-40 years)	Medium (15-40 veers)	Medium (15-40 years)	Lorg (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)		Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	(Subskind (12-40 Noom)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Replaceable (Small/Young)	Replaceable (Small/Young)	Replaceable (Small/Young)	Short (5-15 years)	Replaceable (Small/Young)	 Medium (15-40 years) 		Medium (15-40 years)	Chart (E. 15 years)	Short (5-15 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)		_	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	
Low	Low	V Low / Remove	Low	Moderate	Low	LOW	LOW	Low	DW	Low	Low	Low	ngin	High	Moderate	Moderate		Moderate	High	High	High	High	Hiah	Inw	Low	Low	Low	High	Low	High	Moderate	Low	Low	Low	Low	Low	Low		Low	- Com	Low	Moderate	Moderate	Moderate	moderate	Low	-	Moderate	Moderate	Moderate	Low	Low	Low	Retention
Multi trunk from base, very spreading form.					Supressed canopy								Growing on top or concrete retaining wall.	Oracian an tan of annota satairing scall			canopy.	Part of a closely spaced group. Sparse	Part of a closely spaced group.	Fattoria uruseny spazeu gioupu	Dart of a alcondu anomal around			Part of a closely spaced group.	-			Young Tree <12 months													Poplar.	Mould knott from removal of nearby						Tree replaceable						
Native	Native	Native			Endemic						Native	Engemic				R	1		Native				Native	Native	Native	Native			Endemic	Native	Endemic		Exotic	Exotic	Native	Native	Native		Native		Native		Native	Native	Native			Endemic	Endemic	Endemic	Exotic	Exotic	Exotic	
Small	Small	Small	Small	Medium	Medium	oligi	Small	Cmall	Small	Small	Small	Large		Citic	Civic	Medium		Civic	Civic	Civic	Civic	Civic	Civic	Marliim	Medium	Medium	Medium	CIVIC	Medium	Civic	Medium	Medium	Medium	Medium	Small	Small	Small	1	Small	Cmall	Small	Medium	Medium	Medium	Mealum	Small		Large	Large	Large	Medium	Medium	Medium	
Evergreen	Evergreen	Evergreen	Evergreen	Deciduous	Evergræn	Lveigiœi	Function	Palm SingleStem	Palm-SinnleS	Palm-SingleStem	Palm-SingleS	Evergreen	Evergreen		Everylater	Evergreen	1	Evergreen	Evergræn	Evergreen	Evergreen	Evergreen	Everareen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Deciduous	Deciduous	Deciduous	Evergræn	Evergreen	Evergreen		Evergreen	Eviormoon	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	1	Evergræn	Evergreen	Evergreen	Deciduous	Deciduous	Deciduous	
Kemove	Remove	Remove	Remove	Remove	Remove	INGILIOVO					Stem Remove	Kemove	Demove		Domoto	Remove		Retain	Retain	Retain	Retain	Retain	Retain	Remov	Remove	Relliove	Remove	Ketain	Remove	Retain	Remove	Remove	Remove	Remove	Remov	Remove	Remove		Remove	Damo	Kemove	Ketain	Retain	Retain	Ketain	Remove	2	Retain	Retain	Remove	Remove	Remove	Remove	
e	Ve	ve	ve	ve	ve	đ	i d	à	Ð	./e	ie.	ē	i di	ò	à	ē		-		-	-			đ	Ve	i e	e e		ve	-	ve	θV	ve	ve	ve	ve	ve		ve d	6	ve			-		ve		-	-	Ve	ve	Ve	Ve	

17	76	75	74	73	72	71	71	70	69	68	67	66 0	6F	64.5	64.4	64.3	64.2	£ 2	63 20	61	60	59	58	57	56	55	54	53 1	5 -	2 2	5 49	48	47	46	45	4	43	42	41	48	39	37	36	35	34	33	Tree ID
z	z	z	z	z	z	z	z	z	N	z	z	z 2	2 2	: z	z	z	z	z	z z	: z	z	z	z	z	z	z	z	z	z 2	z z	: z	z	N	z	z	z	N	z	z	z	z z	zz	z	z	z	z	Precinct
HEUS INCIO	Platanus x aceritolia	Ficus micro	Ficus micro	Ficus micro	Platanus x acerifolia	Platanus x acerifolia	Platanus x acerifolia	Laphostemon confertus	Eucalyptus bdryoides	Laphostemon confertus	Eucalyptus botryoides	Eucalyptus bdryoides	Funaluntus	Archontoph	Archontopho	Archantophe	Archontopho	Archontopho	Ficus micro	Cellis australis	Celtis australis	Celtis australis	Tristaniopsis laurina	Casuarina c	Casuarina c	Casuarina c	Platanus x acentolia	Casuarina c	Oupaniopsis	Eucalyptus -	Archontopho	Archantophe	Platanus x aceritolia	Platanus x acerifolia	Ficus microcapa var.	Ficus micro	Ficus micro	Platanus x aceritolia	Platanus x acerifolia	Ficus micro	Ficus microcaipa var.	Archunupus Biotomic y s	Celtis sinensis	Eucalyptus bicostata	Ficus rubiginosa	Callistemon viminalis cv.	Tree Species
ricus mucrocapa var. num		: hilli	Ficus microcapa var. hillii	Ficus microcapa var. hilli	oentolia	centolia	icerifolia	n confertus		n confertus	bdryoides		ngiannana			Archontophoenix cunninghamiana	Archontophoenix cunninghamiana	Archontophoenix cunninghamiana	Ficus microcapa var. hilli	in the second se	r 67	lis.	laurina	Casuanna cunninghamiana	Casuarina cuminghamiana	Casuarina curninghamiana	oerifolia	Casuanna cunninghamiana	Cupaniopsis anacardioides	ucalyptus næmastoma	Archontophoenix cunninghamiana	Archontophoenix cunninghamiana	oentolia	oentolia	apa var. hilli	Ficus microcapa var. hilli	⊏icus microcapa var. hillii	oenifolia	oerifolia	Ficus microcapa var. hillii	apa var. hilli	ningramiana			1058	viminalis cv.	
Hills weeping Fig	London Plane	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	London Plane	London Plane	London Plane	Brush Box	Bangalay	Brush Box	Bangalay	Bangalay	Bangalav	Bangalow Palm	Bangalow Palm	Bangalow Palm	Bangalow Palm	Bangalow Palm	Hills Weeping Fig	Southern Hackberry	Southern Hackberry	Southern Hackberry	Water Gum	River She-Oak	River She-Oak	River She-Oak	London Plane	River She-Oak	Tuckeroo	Scribbly Gum	Bangalow Palm	Bangalow Palm	London Plane	London Plane	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	London Plane	London Plane	Hills Weeping Fig	Hills Weeping Fig	Bangalow Paim	Chinese Hackberry	Southern Blue Gum	Port Jackson Fig	Weeping Bottlebrush	Common Name
MORACEAE	PLATANACEAE	MORACEAE	MORACEAE	MORACEAE	PLATANACEAE	PLATANACEAE	PLATANACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	ARECACEAE	ARECACEAE	ARECACEAE	ARECACEAE	ARECACEAE	MORACEAE	MOBACEAE	ULMACAEAE	ULMACAEAE	MYRTACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	PLATANACEAE	CASUARINACEAE	SAPINDACEAE	MYRTACEAE	ARECACEAE	ARECACEAE	PLATANACEAE	PLATANACEAE	MORACEAE	MORACEAE	MORACEAE	PLATANACEAE	PLATANACEAE	MORACEAE	MORACEAE	PLATANACEAE	ULMACAEAE	MYRTACEAE	MORACEAE	MYRTACEAE	Family
20.0			20.0 1.	20.0 1.	15.0 0.	15.0 0.	15.0 0.		15.0 0.			15.0 0.					7.0 0.		20.0						20.0 0.	20.0 0.	20.0 0.			7.0 0.			12.0 0.	12.0 0.	18.0 0.			15.0 0.				90 0			8.0 0.	8.0 0.	Height (m) (der Breast min Tr
ŝ	1 0.20	1.00	1.00	1.00	0.40	0.30	0.30		0.30	0.15			0.30	0.20			0.20		1.00						0.60	0.30	0.50			0.20	0.20		0.30	0.20	0.70			0.25		0.90	1.10				0.70	0.60	Trunk Diameter at Dia Breast Height bass (dbh) (m)
į,	0.25	1.20	1.20	1.20	0.40	0.40	0.40	0.15	0.40	0.20	0.40	0.40	0.40	0.30	0.30	0.30	0.30	0.30	1.20	3 2	0.20	0.20	0.10	0.70	0.70	0.40	0.60	0.30	0.10	0.20	0.30	0.30	0.30	0.20	0.70	0.70	1.00	0.25	0.25	1.00	1.20	0.20	0.70	1.00	0.80	0.70	Trunk Diameter at T base (dg) (m) (n
12.00	2.40	12.00	12.00	12.00	4.80	3.60	3.60	2.00	3.60	2.00	3.60	380	2.40	2.40	2.40	2.40	240	240	12.00	2.40	2.40	2.40	2.00	7.20	7.20	3.60	6.00	240	000	2.40	2.40	2.40	3.60	2.40	8.40	8.40	10.80	3.00	3.00	10.80	3.0U 13.20	2.00	7.20	10.80	8.40	7.20	Nominal TPZ radius S (m) 12xdbh (AS 4970)
3.57		3.57	3.57	3.57	2.25	2.25	2.25		2.25	1.68 ^S	225	2 25	202	200	2.00	2.00	200	200	ດ ຊີ ບໍ	-	1.68 S	1.68 S	_		2.85	2.25	2.67		1 26	1.00		2.00	2.00	1.68	2.85	2.85	3.31	1.85		33	3.57	1.68	-	3.31	3.01 S	2.85	Nominal SRZ radius (m) (AS 4970)
Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Semi-mature	Mature	Semi-mature	Mature	Mature	Matura	Mature	Mature	Mature	Mature	Mature	Mature	Sem-mature	Semi-mature	Semi-mature	Young	Mature	Mature	Mature	Mature	Semi-mature	Semi-mature	Semi-mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature emi-mature	Mature	Mature	Semi-mature	Mature	Age Class
rai	n Fair	Fair	Fair	Fair	Fair	Fair	Fair	Fair	Good	Fair	Good	Fair	Fair	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Good	Fair	Good	Good	Good	Good	Good	Good	Fair	Fair	Fair	Fair	Good	Fair	Fair	Good	Good	Fair Fair	Good	Good	Excellent	Good	Current Vigour
Poor	Suppressed	Poor	Poor	Poor	Poor	Poor	Poor	æ	Good	Average	Average	Poor	Poor	Average	Average	Average	Average	Average	Good	600	Good	Good	Good		Average	Poor	Good	Average	Average	Average	Average	Average	Suppressed	Suppressed	Poor	Poor	Average	Suppressed	Suppressed	Average	Average	Average	Good	Average	Average	Average	Current Form
					Very Asymmetric Canopy	Very Asymmetric Canopy	Very Asymmetric Canopy		Very Asymmetric Canopy																Excessively Pruned	Very Asymmetric Canopy							Very Asymmetric Canopy	Very Asymmetric Canopy	Very Asymmetric Canopy												Noted Defects
Lorg (>40 years)	Medium (15-40 years)	Lorg (>40 years)	Lorg (>40 years)	Lorg (>40 years)	Lorg (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	I nm (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	I om (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	SULE Rating
moderate	Low	Moderate	Moderate	Moderate	Low	Low	Low	Low	Moderate	Low	High	Low	- CH	Low	Low	Low	Low	Low	Moderate	Low	Low	Low	Low	High	High	Low	High	Low	Low	Low	Low	Low	Low	Low	Low	Low	High	Low	Low	High	High	Low	Low	Moderate	Moderate	Low	Retention Value
Growing as pair or a very rightly spaceo group. Individually trees would be ranked Low value.	Highly suppressed.	Growing as part of a very lightly spaced group. Individually trees would be ranked Low value.	Growing as part of a very lightly spaced group. Individually trees would be ranked Low value.	Growing as part of a very lightly spaced group. Individually trees would be ranked Low value.					Growing in very close proximity to concrete walls									9	Growing as group with 62	Small size, otnerwise good trees.	Small size, otherwise good trees.	Small size, otherwise good trees.																			Part of a closely spaced group.						General Comments and Notes
Native	Exotic	Native	Native	Native	Exotic	Exotic	Exotic		ste Endemic	Native	Endemic	Endemic	Endemic	Native	Native	Native	Native	Native	Native	Exotic	Exotic	Exotic	Native	Native	Native	Native	Exotic	Native	Native	Endemic	Native	Native	Exotic	Exotic	Native	Native	Native	Exotic	Exotic	Native	Native	Fxotic	Invasive	Native	Native	Native	origin
			Civic	Civic	Large	Large	Large	а	Large	Medium	_	Large							Civic	Э		Medium [Medium	Medium	Large	2		Medium B		Small P	Large	Large	Civic			Large			Civic E		з		Large	Small	Ultimate 1 Tree Size
Evergræn	Deciduous	Evergræn	Evergreen	Evergræn	Deciduous	Deciduous	Deciduous	Evergræn	Evergreen	Evergræn	Evergreen	Evergreen	Fvermen	Palm-SingleStem	Palm-SingleStem	Palm-SingleStem	Palm-SingleStem	Palm-SingleStem	Evergreen	Deciduous	Deciduous	Deciduous	Evergræn	Evergreen	Evergræn	Evergreen	Deciduous	Evergreen	Evergreen	Evergreen	Palm-SingleStem	Palm-SingleStem	Deciduous	Deciduous	Evergræn	Evergreen	Evergræn	Deciduous	Deciduous	Evergreen	Evergreen	Paim-singlestem	Deciduous	Evergreen	Evergreen	Evergræn	Tree Type
Kennove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove						Re	Retain	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Retain	Remove	Remove	Remove	_		Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove			Remove	Remove	Remove	Planning Proposal Recommendation

125	124	123	122	121	120	110	110	440	117	116	115	114		113	112	:	11	110	100	100	107	106	105	104	103	201	400	101	100	8	86	97	ş	96	94	93	92	91	90	89	88	87	s 3	84	8	82	8	8		79		e ID
z	z	z	z	z	z	2 2	2 2	2 3	z :	z	z	z	:	z	z	:	z	z 2	zz	-	z	z	z	N	z	z	z	z	z 2	z	z	z	-	z 2	zz	z	z	z	z	z	z 2	2 2	z 2	z	z	z	z	z	:	z 2		Precinct
Ficus microcapa var. hilli	Corymbia maculata	Lagunaria patersonia	Corymbia maculata	Corymbia maculata	Afrocarpus falcatus	Amhontonhoenix cunningtamiana	Amhontonhoaniv cunningtamiana	Banksia senata	Lagunaria patersonia	Lagunaria patersonia	Corymbia maculata	Corymbia maquata	O	Corymbia maculata	Corymbia maculata		Corymbia maculata	Corymbia maculata	Rademachera sinica?	Cravillaa mbusta	Lagunaria patersonia	Lagunaria patersonia	Casuarina curninghamiara	Platanus x acerifolia	Lagunaria patersonia	refinition for a sound	l ammana nataronnia	Lagunaria patersonia	Lagunaria patersonia	Banksia interritolia	Ficus rubiginosa	Corymbia maculata		Corymbia maculata	Corymbia maculata	Corymbia maculata	Corymbia maculata	Corymbia maculata	Banksia integrifolia	Corymbia maculata	Corymbia maculata	Corvmhia magulata	Findersia australis	Conumbia magulata	Corymbia maculata	Corymbia citriodora	r icus /////ocalpa va., /////	Platanus x aceritolia		Platanus x acerifolia	Datanun v noordalin	Tree Species
Hills Weeping Fig	Spotted Gum	Norfolk Island Hibiscus	Spotted Gum	Spotted Gum	Outeniqua Yellow-wood	Bangalow Palm	Bannalow Palm	Old Man Ranksia	Norfolk Island Hibiscus	Norfolk Island Hibiscus	Spotted Gum	Spotted Grum		Spotted Gum	Spotted Gum		Spotted Gum	Spotted Gum	China Doll Tree?	Siller Dat	Norfolk Island Hibiscus	Norfolk Island Hibiscus	River She-Oak	London Plane	Norfolk Island Hibiscus		Norfolk leland Hibiscus	Norfolk Island Hibiscus	Norfolk Island Hibiscus	Coastal Banksia	Port Jackson Fig	Spotted Gum	-	Spotted Gum	Spotted Gum	Spotted Gum	Spotted Gum	Spotted Gum	Coastal Banksia	Spotted Gum	Spotted Gum	Spotted Gum	Crows Ash	Shotted Gum	Spotted Gum	Lemon Scented Gum	Lindaam suur	London Plane		London Plane		Common Name
MORACEAE	MYRTACEAE	MALVACEAE	MYRTACEAE	MYRTACEAE	PODOCARPACEAE	ARECACEAE		PROTEACEAE	MALVACEAE	MALVACEAE	MYRTACEAE	MIRIACEAE		MYRTACEAE	MYRTACEAE		MYRTACEAE	MYRTACEAE	BIGNONIACEAE	DEOTEACEAE	MALVACEAE	MALVACEAE	CASUARINACEAE	PLATANACEAE	MALVACEAE		MAIVACEAE	MALVACEAE	MALVACEAE	PROTEACEAE	MORACEAE	MYRTACEAE		MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	PROTEACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	RUTACEAE	MYDTACEAE	MYRTACEAE	MYRTACEAE	monaceae	PLATANACEAE		PLATANACEAE		Family
20.0	18.0	9.0	18.0	18.0	12.0	0.6	0	70	12.0	12.0	16.0	20.0	3	20.0	15.0		22.0	22.0	18.0	18 0	15.0	15.0	16.0	18.0	15.0	0.0	10 0	10.0	10.0	9.0	12.0	18.0		12.0	16.0	16.0	16.0	20.0	6.0	16.0	18.0	18.0	18 0	18.0	18.0	18.0	Ē	18.0		8.0		t (m)
0.70	0.25	0.10	0.25	0.25	0.60	0 15	0.00	3	0.40	0.40	0.30	0.30	2020	0.30	0.20		0.70	0.70	0.20	2	0.40	0.40	0.30	0.40	0.40	6.75	040	0.40	0.40	0.15	0.50	0.50		0.20	0.20	0.20	0.20	0.60	0.15	0.30	0.40	040	040	0.40	0.30	0.30	0.20	0.20		0.10	(dbh) (m)	Trunk ameter at
0.80	0.40	0.15	0.25	0.25	0.70	0.30	0.00	0.50	0.50	0.50	0.50	0.50	0	0.50	0.30		0.80	0.80	0.20	0.25	0.40	0.40	0.30	0.50	0.40	5	0 40	0.40	0.40	0.15	0.70	0.60		0.25	0.50	0.25	0.25	0.70	0.15	0.40	0.40	040	040	0.20	0.40	0.40		0.30		0.10) (m)	Trunk Diameter at
8.40	3.00	200	3.00	3.00	7.20	2.00	0.00	3 1.00	4 80	4 80	3.60	3.60	8	3.60	2.40	0.00	8 40	8.40	2.40	5	4.80	4.80	3.60	4.80	4.80	4.00	200	4.80	4.80	300	6.00	6.00	1	240	2.40	2.40	2.40	7.20	2.00	3.60	4.00	4.00	4.80	2.40	3.60	3.60	2.40	2.40		2.00	βÂ	Nominal TPZ radius
3.01	2.25	1 4 9	1.85	1.85	285	3 20	241	2 1	2 47	2 47	2.47	2.47	i	2.47	2.00	0.01	301	3.01	1.00	ĥ	2.25	2.25	2.00	2.47	2.25	c7.7	2	2.25	2) J	1 /0	2.85	2.67	į	185	3 1.85	1.85	1.85	2.85	1.49	2.25	2 22	200	30 C	1.68	2.25	2.25	ZUU	2.00		1.26	45 (E)	Nominal SRZ radiu
Mature	Mature	Semi-mature	Mature	Mature	Semi-mature	Mature	Maturo	Mature	Mature	Mature	Mature	Mature		Mature	Mature		Mature	Mature	Semi-mature	Comimatur	Mature	Mature	Mature	Mature	Mature	maturo	Mature	Mature	Mature	Semi-matur	Semi-mature	Mature		Mature	Mature	Mature	Mature	Mature	Semi-mature	Mature	Mature	Mature	Mature	Meture Meture	Mature	Mature	malula	Mature		Mature		
Good		e Fair	Fair		-	Fair	Fair	Good	Good	Good	Fair	rall	ļ	Fair	Fair		Good		e Guou		Fair	Fair	Fair	Fair	Fair	ŝ	Fair	Fair	Fair	-	e Fair	Good		Fair	Good	Fair	Fair	Good		Good	Fair	Fair	Good			Good		Fair		Moribund	Current V	igour
Poor	Average	Average	Average	Suppresser	Average	Average	Δ.vorano	Averana	Average	Average	Average	AbelaAv		Average	Suppressed		Good	Good	Average	- Front	Poor	Poor	Average	Average	Poor	ŝ	Pop	Poor	Poor	Average	Poor	Good	:	Suppressed	Average	Average	Average	Good	Average	Good	Average	Average	Good	Average	Average	Average	nassardno	Average	-	Suppressed	Current	-orm
Very Asymmetric Canopy	Very Asymmetric Canopy		Very Asymmetric Canopy	u							Very Asymmetric Canopy	very Asymmetric Cariquy	V	Very Asymmetric Canopy	Very Asymmetric Canopy		Very Asymmetric Canopy				Very Asymmetric Canopy	Very Asymmetric Canopy			Very Asymmetric Canopy	very nayimonic centry	Very Asymmetric Canon	Very Asymmetric Canopy			Very Asymmetric Canopy	Very Asymmetric Canopy		Very Asymmetric Canopy														-			2	Noted
r Lorg (>40 years)	-	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	I nm (>40 years)	Long (>40 years)	Long (>40 years)	 Long (>40 years) 	Lorg (>40 years)		 Long (>40 years) 	Long (>40 years)			Long (>40 years)	Medium (15-40 veers)		 Long (>40 years) 	Long (>40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)		/ I nm />40 years)		Long (>40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)			Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	mourui (is-40 years)	Medium (15-40 years)		Remove (<5 years)	Modium (dE d0 soom)	SULE Rating
High	Low	Low	Low	Low	Moderate	Low	In	Moderate	Low	Low	Low	moderate		Moderate	Moderate		Moderate	High	Low	- Om	Low	Low	Low	Moderate	Low	LOW	Inw	Low	Low	Low	Low	High		Low	Hinh	Moderate	Moderate	High	Moderate	High	Moderate	Moderate	High	High	High	High	Low	Moderate		V Low / Remove	Retention \	/alue
																																			Intergrown grouping, ketain as a group.	Intergrown grouping. Retain as a group.	Intergrown grouping. Retain as a group.										group. Individually trees would be ranked Low value. This specimen very suppressed, smallest specimen in group.			Highly suppressed.	Likhin noorooo	General Comments and Notes
Native	Native	Exotic	Native	Native	Exotic	Native	Nativo	Endemic	Exotic	Exotic	Native	Native	N	Native	Native		Native	Native	Exotic	masing	Exotic	Exotic	Native	Exotic	Exotic	LVOIC	Exotic	Exotic	Exotic	Endemic	Native	Native		Native	Native	Native	Native	Native	Endemic	Native	Native	Native	Native	Nativo	Native	Native		Exotic	1	Exotic	E Cirgin	Origin
Civic	Large	Medium	Large	Large	Large	Small	Small	Small	Medium	Medium	Large	Large	Ī	Large	Large		Large	Large	Medium	2000	Medium	Medium	Medium	Large	Medium	moului	Medium	Medium	Medium	Small	Large	Large		Large	Large	Large	Large	Large	Small	Large	Large	Laroe	Madium	Large	Large	Civic	Crac	Large		Large		Ultimate
Evergreen	Evergreen	Evergreen	Evergreen	Evergræn	Conifer	Palm-SingleStem	Palm_SinnleSte	Evernmen	Everareen	Evergreen	Evergræn	Evergreen		Evergreen	Evergræn		Evergreen	Evergræn	Evergreen	Evennen	Evergreen	Evergræn	Evergreen	Deciduous	Evergreen	Logian	Evernreen	Evergræn	Evergreen	Everareen	Evergreen	Evergræn		Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	n naiðiræi	Deciduous		Deciduous		Tree Type
Retain	Remove	Remove	Remove	Remove		em Remove		Retain	Remove	Remove	Remove	Remove		Remove	Remove		Retain	Remove	Remove	Damoio	Remove	Remove	Remove	Remove	Remove	INGUINARD	Remove	Remove	Remove	Remove	Remove	Retain		Remove	Retain	Retain	Retain	Retain	Retain	Retain	Retain	Retain	Retain	Petain	Remove	Remove		Remove	9	Remove		Planning Proposal

170	169	168	167	166.3	166.2	166	165	164		163	162	161	160	159	158	157	156	155	154	153	-	152	151	150	149	148	14/	i	146	145	144	143	142	141	140	139	130	137.4	137.3	137.2	137	136	135	134	133	132		131	130	129	128	127	126	Tree ID
z	z 2	z	z	z	z	z	N	z	:	z	z	z	z	z	z	z	z	z	z	z		z 2	z 2	z	z	z	z	:	z	z	z	z	z	z	z	z	2	2 2	z z	z	z	z	z	z	N	z	:	z	z	z	z	N	z	Precinct
Syagrus romanzoffiana	Syagrus romanzoffiana	Syagrus romanzoffiana	Eucalyptus piperita?	Archontophoenix cunninghamiana	Archontophoenix cunninghamiana	Archontophoenix cunninghamiana	Phoenix canariensis	Eucalyptus botryoides		Platanus x acentolia	Platanus x acerifolia	Eucalyptus botryoides	Lagunaria patersonia	Celtis sinensis	Platanus x acentolia	Casuanna curningnamiara	Lagunana patersonia	Casuanna glauca	Casuanna glauca	Casuarina glauca		Platanus x acerifolia	Jacaranda mimosifolia	Jacaranda mimosifolia	Jacaranda mimosifolia	Ulmus parvifdia	Currus parvirola	I Francisco va constitution	Ficus microcapa var. hitti	Ficus microcapa var. hilli	Ficus microcapa var. hillii	Ficus microcapa var. hilli		Ficus microcapa var. hilli	Ficus microcapa var. hittii	Ficus microcapa var. hilli		Ficus microcana var. hilli	Callistemon wiminalis cv.	Callistemon viminalis cv.	Callistemon wminalis cv.	Macadamia integrifolia	Corymbia maculata	Ficus microcapa var. hilli	Ficus microcapa var. hitti	Ficus microcape var. niim	Fr	Ficus microcapa var. hilli	Ficus microcapa var. hillii	Ficus microcapa var. hilli	Ficus microcapa var. hilli	Ficus microcapa var. hilli	Ficus microcapa var. hilli	Tree Species
Queen Palm	Queen Palm	Queen Palm	Sydney Peppermint?	Bangalow Palm	Bangalow Palm	Bangalow Palm	Canary Island Date Palm	Bangalay		London Plane	London Plane	Bangalay	Norfolk Island Hibiscus	Chinese Hackberry	London Plane	Niver Sne-Uak	Nortolk Island Hibiscus	Swamp SheOak	Swamp She-Uak	Swamp She-Oak		London Plane	Jacaranda	Jacaranda	Jacaranda	Chinese Elm			Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig		Hills Weeping Fig	Weeping Bottlebrush	Weeping Bottlebrush	Weeping Battlebrush	Macadamia	Spotted Gum	Hills Weeping Fig	Hills Weeping Fig	Hills weeping Fig		Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	Hills Weeping Fig	Common Name
ARECACEAE	ARECACEAE	ARECACEAE	MYRTACEAE	ARECACEAE	ARECACEAE	ARECACEAE	ARECACEAE	MYRTACEAE		PLATANACEAE	PLATANACEAE	MYRTACEAE	MALVACEAE	ULMACAEAE	PLATANACEAE	CASUARINALEAE	MALVACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE		PLATANACEAE	BIGNONIACEAE	BIGNONIACEAE	BIGNONIACEAE	ULMACAEAE	ULMAUAEAE		MORACEAE	MORACEAE	MORACEAE	MORACEAE	MORACEAE	MORACEAE	MORACEAE	MORACEAE		MORACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	PROTEACEAE	MYRTACEAE	MORACEAE	MORACEAE	MUKAUEAE		MORACEAE	MORACEAE	MORACEAE	MORACEAE	MORACEAE	MORACEAE	Family
12.0	12.0	12.0	20.0	9.0	9.0	9.0	8.0	22.0		18.0	18.0	22.0	8.0	10.0	20.0	10.0	14.0	18.0	18.0	18.0		20.0	10.0	10.0	16.0	16.0	0.0	5	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0		20.0	8.0	8.0	8.0	10.0	22.0	22.0	22.0	22.0	3	20.0	20.0	20.0	20.0	20.0	20.0	Height (m)
0.20	0.20	0.20	0.20	0.50	0.50	0.50	0.50	0.40		0.40	0.50	0.40	0.10	0.70	0.70	0.50	0.30	0.40	0.40	0.40		0.60	0.20	080	0.20	0.20	0.20	2	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.00	0.80	0.15	0.15	0.15	0.20	0.60	1.00	1.00	.0	ŝ	1.40	0.70	1.40	1.20	0.80	1.20	n) night
0.30	0.30	0.30	0.20	0.50	0.50	0.50	0.50	0.40		0.60	0.70	0.40	0.15	0.70	0.80	0.00	0.40	0.50	0.50	0.50		0.70	0.20	080	0.20	0.25	0.20	0.05	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	0.20	0.20	0.20	0.20	0.70	1.20	1.20	1.20	2	1.50	0.80	1.50	1.40	0.90	1.40	Dia
2.40	2:40	240	2.40	6.00	6.00	6.00	6.00	4.80		4.80	6.00	4.80	2.00	8.40	8.40	6.00	3.60	4.80	4.80	4.80	1.40	720	240	0,40	2.40	2.40	2.40	5	9.60	9.60	9.60	9.60	9.60	960	9.60	9.60	9.00	2.00	300	2.00	2.00	2.40	7.20	12.00	12.00	12.00	6	15.00	8.40	15.00	14.40	9.60	14.40	
2.00	200	200	1.68	2.47	2.47	2.47	2.47	2.25	ļ	2.67	2.85	2.25	1.49	2.85	3.01	2.67	2.25	2.47	2.47	2.47	-	285	1 50	1 20	1.68	1.85	1.85	ł	3.31	3.31	3.31	3.31	3 3 3	3.31	3.31	3.31	0.0 I	3 24	1.68	1.68	1.68	1.68	2.85	3.57	3.57	3.57	ì	3.92	3.01	3.92	3.81	3.17	3.81	Nominal SRZ radius (m) (AS 4970)
Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature		Mature	Mature	Mature	Young	Mature	Mature	Mature	Mature	Mature	Mature	Mature		Mature	Mature	Mature	Mature	Mature	Mature		Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature		Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature		Mature	Mature	Mature	Mature	Mature	Mature	Age Class
Fair	Fair	Fair	Fair	Good	Good	Good	Good	Fair		Good	Good	Fair	Fair	Good	Good	Good	6000	Good	Good	Good		Good	Good	Good	Good	Fair	rall	The second s	Good	Good	Good	Excellent	Good	Good	Good	Good	0000	Good	Fair	r all	Fair	Good	Good	Excellent	Excellent	Excellent		Excellent	Good	Good	Good	Good	Good	Current Vigour
Average	Average	Average	Poor Very Asymmetric Canopy	Good	Good	Good	Good	Average Excessively Pruned			Average	Average Excessively Pruned	Average	Good	Average			Average	Average	Average		Average Very Asymmetric Canopy	Average	Average	Poor Very Asymmetric Canopy	Poor Very Asymmetric Canopy	Yeiy Asymmetric carduy		Average Very Asymmetric Canopy	Average Very Asymmetric Canopy	Average	Good	Good	Average	Average Very Asymmetric Canopy	Average Very Asymmetric Canopy		Average Very Asymmetric Canopy	Poor	Poor	Poor	Good	Good	Good Very Asymmetric Canopy	Good Very Asymmetric Canopy	Good Very Asymmetric Candpy		Good Very Asymmetric Canopy	Suppressed Very Asymmetric Canopy	Good	Good Very Asymmetric Canopy	Poor Very Asymmetric Canopy, Lean-Major	Average Very Asymmetric Canopy	Current Form Defects
Lorg (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)		Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)		Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	1 mm (~ 40 mm)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	formed or 3 Brown	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Lorg (>40 years)		Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	SULE Rating
Low	Low	Low	Low	Low	Low	Low	Moderate	Moderate		Low	Moderate	Moderate	Low	Low	Moderate	ngin	Moderate	Moderate	Moderate	Moderate		Moderate	Moderate	Moderate	Low	Low	LOW	-	Moderate	Moderate	Moderate	High	High	Moderate	Moderate	Moderate		Moderate	Low	Low	Low	Moderate	High	High	High	Low	Ī	High	Moderate	High	High	Low	High	Retention Value
																Group		Group	Group	Fascination noted in canopy.												Very good tree			Trimed away from buildings	Trimed away from buildings	all more rear forms more	Trimed away from buildings										Group of 4						General Comments and Notes
Exotic	Exotic	Exotic	Endemic	Native	Native	Native	Exotic	Endemic		Exotic	Exotic	Endemic	Exotic	Invasive	Exotic	Native	EXOLIC	Endemic	Endemic	Endemic		Exotic	Exotic	Exotic	Exotic	Exotic	EXOLIC		Native	Native	Native	Native	Native	Native	Native	Native		Native	Native	Nativo	Native	Native	Native	Native	Native	Native		Native	Native	Native	Native	Native	Native	
Small	Small	Small	Medium	Small	Small	Small	Small	Large		Large	Large	Large	Medium	Medium	Large	Meaium	Medium	Medium	Medium	Medium	4	Large	Medium	Medium	Medium	Large	Laige		Civic	Civic	Civic	Civic	Civic	Civic	Civic	Civic	0110	Civic	Small	Small	Small	Small	Large	Civic	Civic	CIVIC	2	Civic	Civic	Civic	Civic	Civic	Civic	Ultimate Tree Size
Palm-SingleStem	Palm-SingleStem	Palm-SingleStem	Evergreen	Palm-SingleStem	Palm-SingleStem	Palm-SingleStem	Palm-SingleStem	Evergræn		Deciduous	Deciduous	Evergreen	Evergreen	Deciduous	Deciduous	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen		Deciduous	Deciduous	Decidinius	Deciduous	Deciduous	Decidious		Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen		Everareen	Evergreen	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen	Evergreen	Evergreen		Evergreen	Evergræn	Evergreen	Evergræn	Evergreen	Evergreen	e Tree Type
		em Remove	Remove		em Remove	em Remove	em Remove			Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove		Remove	Remove	Remove	Remove	Remove	Relilove		Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove		Remove	Remove	Remove	Remove	Retain	Retain	Retain	Retain	Remove	2	Retain	Retain	Retain	Retain	Remove	Retain	e Planning Proposal Recommendation

190	189	188	187	186	0.00109	0.00108	0.00107	0.00106	0.00105		0.00104	0.00103	31831	185	184	32578	32577	24422	29812	16172	13284	13283	13282	13281	13280	13279	13278	12463	12462	12461	12400		12458	12173	12172	12171	6834	6833	866	405	404	403	183	180	101	180	178	i	177	176	1/4	173	172	171	Tree IC
s	s	s	s	s	s	s	s	s		,	s	s	z	z	z	z	z 2	z 2	2 2	: z	z	z	z	z	N	z	z	z	z	z	z	:	z :	zz	: 2	z	z	N	z	z	z	z	z	zz	2 2	z z	z		z	z 2	z z	z	z	N	Frecinct
Cotoneaster glaucophyllus	Lagunaria patersonia	Eucalyptus caleyi ? hybrid?	Bauhinia variegata	Cotoneaster gaucophyllus	Archontophoenix cunninghamiana	Archontophoenix cunninghamiana	Melaleuca quinquenervia	Hooma pseudoacacia Frisia	Melaleuca quirtiprervia	Malalaraa artaaraan ta	Robinia pseudoacacia 'Frisia'	Callistemon viminalis cv.	Laphostemon confertus	Lagunaria patersonia	Eucalyptus bdryoides	Jacaranda mimosifolia	Jacaranda mimosifolia	Convmhia eximia	Equivasternon confartus	Laphostemon contertus	Laphostemon confertus	Laphostemon confertus	Laphostemon confertus	Tiistaniopsis laurina	Laphostemon confertus	Laphostemon confertus	Laphostemon confertus	Robinia pseudbacacia 'Frisia'	Melaleuca quinquenervia	Melaleuca quinquenervia	waxaanna dhiindhan ka	Malalanaa ariinaraanaariin	Melaleuca quinquenervia	Melaleuca quinquenervia	Laphosternon contertus	Laphostemon confertus	Eucalyptus microcorys	Eucalyptus microcorys	Laphostemon confertus	Platanus x acerifolia	Jacaranda mimosifolia	Lagerstroemia indica	Brachychiton acentolius	Archontophoenix cunninghamiana	Einaluntiie hrtninidee	Corvmbia maculata	Syagrus romanzomana	6	Corymbia maculata	Fucalvatus hotavoides	Eucalypius robusta	Eucalyptus robusta	Ficus microcapa var. hilli	Syagrus romanzoffiana	rree Species
Large Leaf Cotoneaster	Norfolk Island Hibiscus	Caley's Ironbark	Orchid Tree	Large Leaf Cotoneaster	Bangalow Palm	Bangalow Palm	Broad Leafed Paperbark	DIACK LOCUS	proad Leared Paperbark		Black Locust	Weeping Bottlebrush	Brush Box	Norfolk Island Hibiscus	Bangalay	Jacaranda	Jacaranda	Yellow Bloodwood	Brush Box	Brush Box	Brush Box	Brush Box	Brush Box	Water Gum	Brush Box	Brush Box	Brush Box	Black Locust	Broad Leafed Paperbark	Broad Leated Paperbark	Divad Lealed F aperban	Description Description	Broad Leafed Paperbark	Broad Leafed Paperbark	Brush Box	Brush Box	Tallowood	Tallowood	Brush Box	London Plane	Jacaranda	Crepe Myrtle	Illawarra Flame Tree	Bangalow Palm	Bannalav	Spotted Gum	Queen Palm		Spotted Gum	Bangalav	Swamp Mahogany	Swamp Mahogany	Hills Weeping Fig	Queen Palm	
ROSACEAE	MALVACEAE	MYRTACEAE	FABACEAE	ROSACEAE	ARECACEAE	ARECACEAE	MYRTACEAE	FADAUEAE	FADAOFAF		FABACEAE	MYRTACEAE	MYRTACEAE	MALVACEAE	MYRTACEAE	BIGNONIACEAE	BIGNONIACEAE	MYRTACEAE	MYRTACEAE	MYRIACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	FABACEAE	MYRTACEAE	MYRIACEAE		AVDTACEAE	MYRTACEAE	MYRTACEAE	MYBTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	PLATANACEAE	BIGNONIACEAE	LYTHRACEAE	MALVACEAE	ARECACEAE	MYRTACEAE	MYRTACEAE	ARECACEAE		MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRIACEAE	MORACEAE	ARECACEAE	
7.0	8.0	18.0	10.0	9.0	5.0	7.0	5.0	9.0	IZ.U	3	9.0	6.0	6.0	9.0	9.0	3.0	4.0	40.0	A 0.0	5.0	7.0	5.0	8.0	8.0	6.0	6.0	3.0	3.0	12.0	17.0		47.0	15.0	9.0	12.0	12.0	15.0	16.0	14.0	14.0	8.0	7.0	7.0	7.0	30.0	15.0	15.0	2	18.0	22 0	22.0	20.0	22.0	12.0	Height (n
0.20	0.20	1.40	0.40	0.20	0.10	0.10	0.20	0.40	0.30	22	0.40	0.20	0.10	0.20	0.30	0.05	0.05	0.10	0.20	0.15	0.20	0.20	0.30	0.10	0.20	0.20	0.05	0.05	0.80	0.80	ŝ	ŝ	0.70	0.70	0.40	0.50	0.60	0.50	0.40	0.25	0.20	0.20	0.15	0.15	0.80	0.60	0.20	8	0.20	0.30	0.30	0.50	1.50	0.20	Diameter at Breast Height (dbh) (m)
0.30	0.30	1.50	0.50	0.30	0.15	0.15	0.20	0.50	0.40	5	0.50	0.20	0.10	0.30	0.30	0.05	0.05	0.10	0.20	0.20	0.25	0:30	0.40	0.20	0.20	0.25	0.05	0.05	0.90	0.80		8	0.70	0.80	0.50	0.60	0.60	0.60	0.40	0.30	0.25	0.25	0.20	0.20	0.00	0.60	0.30	2	0.25	0.50	0.50	0.60	1.80	0.30	Diameter at base (dgl) (m)
2.40	2.40	15.00	4.80	2.40	2.00	2.00	2.40	4.80	3.60	8	4.80	2.40	2.00	2.40	3.60	2.00	200	2.40	2.40	2.00	2.40	2.40	3.60	2.00	2.40	2.40	2.00	2.00	9.60	9.60	1200		8 40	840	4.80	6.00	7.20	6.00	4.80	3.00	2.40	2.40	2.00	200	7.00	7 20	2.40		2.40	2 20	3 20	6.00	15.00	2.40	TPZ radius (m) 12xdbh (AS 4970)
2.00	2.00	3.92	2.47	2.00	1.49	1.49	1.68	2.47	225	2	2.47	1.68	1.26	2.00	2.00	0.94	0.94	1.00	1.68	1.68	1.85	2.00	2.25	1.68	1.68	1.85	0.94	0.94	3.17	3.01		-	2.85	3.01	24/	2.67	2.67	2.67	2.25	2.00	1.85	1.85	1.68	168	107	797	200		1.85	240	2.41	2.67	4.24	2.00	s SRZ radius h (m) (AS) 4970)
Semi-mature	Mature	Mature	Semi-mature	Semi-mature	Semi-mature	Semi-mature	Semi-mature	Mature	Mature		Mature	Semi-mature	Young	Semi-mature	Semi-mature	Young	Young	Young	Semi-mature	Sem-mature	Mature	Sem-mature	Semi-mature	Young	Mature	Mature	Young	Young	Mature	Mature	mature	Moderson	Mature	Mature	Mature	Mature	Mature	Mature	Semi-mature	Semi-mature	Semi-mature	Mature	Mature	Mature	Maturo	Mature	Mature		Mature	Mature	Mature	Mature	Mature	Mature	Age Cla
re Fair	Good	Excellent	ire Good	re Fair	_		re Fair	rair	Guu		Good	ire Fair	_	-	-	Fair	Fair	Puro P		-	Good			Poor	Fair	Fair	Fair	Fair	Good	Fair	-	Tali	Fair	Good	n all	Good	Excellent	Good	ire Good	ire Good	re Fair	Good	Fair	Good	Good	Good	Fair	2	Fair	Fair	Fair	Fair	Good	Fair	Current Vigo
Average	Average	nt Good	Average	Poor	Average	Average	Suppressed	Poor	Anada		Average	Average	Average	Average	Average	Poor	Average	Averane	Suppressed	Average	Average	Average	Suppressed	Average	Suppressed	Average	Average	Average	Average	Suppressed	, E		Suppressec	Average	afterant	Average			Good	Good	Poor	Good	Average	Good	Good	Average	Poor		Poor	Averao	Average	Average	Good	Average	Current For
8	æ		8		æ	e	ed Very Asymmetric Canopy	very Asymmetric Caropy			e Very Asymmetric Canopy	æ	æ	œ	8			eu Liviessively Fluieu	-		e Excessively Pruned	Excessively		8	ed Excessively Pruned	8	8	8	8	ed Very Asymmetric Canopy	Canopy, Lean-Ma	-	ed Very Asymmetric Canopy	00			8	8					8						Very Asymmetric Canopy			æ		8	Defects
Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	/ Medium (15-40 years)				_	Medium (15-40 years)	Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Replaceable (Small/Young)	Replaceable (Small/Young)	Renlacephie (Small/Youno)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Replaceable (Small/Young)	Replaceable (Small/Young)	Long (>40 years)	/ Medium (15-40 years)			Me	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	lono (>40 years)	Long (>40 years)	Long (>40 years)			Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	ġ
V Low / Remove	Low	High	Low	V Low / Remove	Low	Low	Low	Low	LOW		Low	Low	Low	Low	Moderate	Low	Low	Low	moderate	Moderate	Moderate	Low	Moderate	Low	Low	Moderate	Low	Low	Moderate	Low	LOW	-	Low	Moderate	Moderate	Moderate	High	Moderate	Moderate	Moderate	Low	Moderate	Moderate	Low	High	Hiah	Low		Low	Moderate	Moderate	Moderate	High	Low	Retention Val
		Excellent tree. Identification uncertain.											Replacable			Young Tree <12 months	Young Tree <12 months						Tree valley pruned				Young Tree <12 months	Replaceable			nico icalili y amay	Troo landing grant	Tree growing into canopy.	Young Tree <12 months																			Good tree		
Invasive	Exotic	Native	Exotic	Invasive	Native	Native	Endemic	EXOUC	ENDERING		Exotic	Native	Native	Exotic	Endemic	Exotic	Exotic	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Exotic	Endemic	Endemic			Endemic	Endemic	Nativo	Native	Native	Native	Native	Exotic	Exotic	Exotic	Native	Native	Endomin	Native	Exotic		Native	Endemic	Endemic	Endemic	Native	Exotic	Origin
Small	Medium	Medium	Medium	Small	Small	Small	Medium	Medium			Medium	Small	Medium	Medium	Large	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Small	Medium	Medium	Medium	Medium	Medium	Medium			Medium	Medium	Medium	Medium	Large	Large	Medium	Large	Medium	Small	Medium	Small		Large	Small		Large	aroe	Medium			Small	Tree Size
Evergreen	Evergreen	Evergreen	Deciduous	Evergreen	Palm-SingleStem	Palm-SingleStem	Evergreen	Deciduous	Evelgieen	7	Deciduous	Evergreen	Evergreen	Evergreen	Evergreen	Deciduous	Deciduous	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen	Deciduous	Evergræn	Evergræn	- Lyciyleen		Evergreen	Evergræn	Evergreen	Evergreen	Evergreen	Evergræn	Evergreen	Deciduous	Deciduous	Deciduous	Deciduous	Palm-SingleStem	Evergreen	Everareen	Palm-SingleStem		Evergreen	Everareen	Evergræn	Evergreen	Evergræn	Palm-SingleStem	ize
Remove	Remove	Retain	Remove	Remove			Remove	Remove	Relliove		Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Permie	Retain	Retain	Remove	Retain	Remove	Remove	Retain	Remove	Remove	Remove	Remove	Nalliova		Remove	Remove	Potoin	Retain	Retain	Retain	Retain	Remove	Remove	Remove		m Remove	Remove	Remove			Remove	Remove	Remove	Remove	Remove	m Remove	Recommendation

485	484	483	482.2	482.1	182	481	480	479.2	479.1	410	479	A77	476		475.2	4.0.1	475.1	474	473	472	471	4/0	469	400	401	467	466	465	464	463	462	401	460	-	459	458	45/	j \$	456	455	454	453	452	451	450	449	444	747	ŧ	445	444	443	442	441	440	439		438	436	Tree IE
s	s	s	s		•	s	s	s	Ś		n 0	0	s	8	s	6	<i>.</i> , .	0	s	s	ŝ		n u	, u	n c	o o	0	in o		s	s	U		,	s	S		, u	<i>n</i> c	<i>.</i> .	n 0	n	s	s c		s	<i>.</i> 0	0	6	n c	n u		5		s	s		<i>.</i> .	n u	Precinct
Lagerstroemia indica	Calodendrum capense	Leptospermum petersonii	Melaleuca linanitolia	Melaeuca iinamuna	Melaleurca linariifolia	Olea europaea subsp. africana	Metrosideros excelsa	Pittosporum tenuifolium cv.	rntosporum tenutroiwum cv.		Malia azadarach	Melia azedarach	Cettis sinensis		Syzygium paniculatum	of a low second second second second	Syzyoium paniculatum	Callistemon viminalis cv.	Eucalyptus pseudoglobulous	Sapium sebiferum	Cetts sinensis	Carus minori ce.	Offinis limon ov	. 3	Callistemon uminalis cv	Acmena smithii var. minor	Morus nigra	Callistemon wiminalis cv.	Robinia pseudbacacia 'Frisia'	Acmena smithii var. minor	Buckinghamia celsissima	CERUS SILIERISIS	Politic cinoncia	Definie norodnosonie 'Estin'	Robinia pseudbacacia 'Frisia'	Hobima pseudoacacia 'Frisia'	Publina pseudacacia "Encia"	Pohinin pseudocacia 'Emin'	Robinia pseudbacacia 'Frisia'	Robinia oseudoacacia 'Frisia'	Pohinia nseurbacacia 'Frisia'	Robinia useurbacacia 'Frisia'	Gleditsia triacanthos	Schinus areira	Melaleuca quinquenervia	Eucalyptus saligna	Eucalyptus saligna	Funaluntus hotnunidas	and the second second second second	Malalauna muimuananvia	Syagnus romanzoffiana	Sugar a magazation	Corymbia maculata	Acacle Invinuunue	Eucalyptus borryoides	Eucalyptus saligna		Eucalyptus bdryoides	Eucalvatus botrvoides	Irree Species
Crepe Myrtle	Cape Chestnut	Lemon Scented Tea Tree	Flax Leaved Paperbark	Flax Leaved Flaperbalk	Flax Leaved Paperbark	African Olive	New Zealand Christmas T	New Zealand Pittosporum	New Lealand Pittosporum	Mary Zaaland Difference	White Cedar	White Cedar	Chinese Hackberry		Magenta Cherry	ingerin einer	Magenta Cherry	Weeping Bottlebrush	Gippsland Blue Gum	Chinese Tallow Tree	Chinese Hackberry		Lemon	Cabhara Tina	Weening Rattlehrush	Small Leaf Lilly Pilly	Mulberry	Weeping Bottlebrush	Black Locust	Small Leaf Lilly Pilly	Ivory Curl Tree		Chinese Haddhorn	Diack	Black Locust	Black Locust	Black Locust	Black Locust	Black Locust	Black Locust	Black Locust	Black Locust	Honey Locust	Peppercorn Tree	Broad Leafed Paperbark	Sydney Blue Gum	Sydney Blue Gum	Bannalav	an one montes a short series	Broad Leafed Panerhark	Queen Palm	Spotted Gran	spotted Gum	Gossamer watte	Bangalay	Sydney Blue Gum		Bangalay	Bangalay	Common Name
LYTHRACEAE	RUTACEAE	MYRTACEAE	MYRTACEAE		MYRTACEAE		Tr MYRTACEAE				MELIACEAE	MELIACEAE	ULMACAEAE		MYRTACEAE		MYRTACEAE	MYRTACEAE	MYRTACEAE	SAPINDACEAE	ULMAGAEAE	NULACEAE	RUTACEAE		MYRTACEAE	MYRTACEAE	MORACEAE	MYRTACEAE	FABACEAE	MYRTACEAE	PROTEACEAE			ENBACEAE	FABACEAE	FABACEAE	EVENCENE		FABACEAE	FABACEAE	FABACEAE	FABACEAE	FABACEAE		_	MYRTACEAE	MYRTACEAE	MYRTACEAE		MYRTACEAE	ARECACEAE	ABECACEAE	MYRIACEAE	HYDTACEAE	MYRIACEAE	MYRTACEAE		MYRTACEAE	MYRTACEAE	Family
7.0	9.0	8.0	8.0	0.0	80	8.0	10.0		-		80	9.0	9.0		9.0	0.0	9.0	9.0	15.0	9.0	10.0	1.0	7.0	80.0	70	6.0	7.0	9.0	9.0	9.0	10.0	0.0	10.0	1	12.0	12.0	12.0	10.0	12.0	11.0	13.0	13.0	10.0	13.0	20.0	23.0	22.0	16.0	1010	15.0	9.0	0 N	18.0	10.0	.22.0	22.0		11.0	20.0	Height (m
0.25	0.30	0.20	0.20	0.20	0 20	0.15	0.10	0.10	0.10	0 10	0 15	0.20	0.15		0.10	0.10	0.10	0.20	0.60	0.25	0.20	0.00	0.10	0.00	0.30	0.10	0.20	0.20	0.20	0.10	0.20	0.00	0 15	D fr	0.15	0.15	0 15	0.45	0.25	0.25	0.25	0.25	0.25	0.50	0.80	0.40	0.60	0 40	0000	0.90	0.20	0.40	0.20	0.0	0.50	0.50		0.80	0.80	n) gra
0.30	0.40	0.25	0.25	0.20	0.25	0.15	0.15	0.15	0. ID	0.45	06.0	0.30	0.20		0.15	0110	0.15	0.20	0.70	0.30	0.20	0.10	0.40	01.0	040	0.15	0.30	0.20	0.20	0.15	0.20	0.20	02.0	22	0.20	0.20	02.0	02.0	0.25	0.25	0.25	0.25	0.25	0.90	0.80	0.60	0.80	080		120	0.20	0.40	0.20	0.10	0.60	0.60		0.90	0.90	Diameter at base (dgl) (m)
3.00	3.60	2.40	2.40	2.40	2 20	2.00	2.00	2.00	2.00	2.00	3 10	240	2.00		2.00	2.00	9 N	240	7 20	3.00	2.40	2.00	2.40	0.00	2 200	200	240	240	240	2.00	2.40	2.00	2.00	8	2.00	2.00	2.00	3.00	2 C.O	2 C.O	3 0.00	30	3.00	6.00	960	480	4.00	1 00	10.00	10 00	2.40	4.80	2.40	2.00	6.00	6.00		960	0.40	S 2 4
200	2.25	1.85	1.85	1.00	1 25	1.49	1.49	1.49	1.49		200	300	1.68		1.49	1.43	1 40	168	2.85	2.00	1.68	1.49	4 40	0.72	30 C	1 4 9	200	168	1 68	1.49	1.68	1.00	1.68	3	1.68	1.68	1.68	1.00	1.95	1.00	1 05	1 85	1.85	3.17	301	267	301	73 0	0.01	3 57 0	1.00	2.37	1.68	1.49	2.67	2.67	9	3 17	3.01	(m) (AS 4970)
Mature	Mature	Mature	Mature	matura	Mature	Semi-mature	Mature	Mature	Mature	Not so	Semi-mature	Semi-mature	Sem-mature		Mature		Mature	Mature	Mature	Mature	Sem-mature	matura	Mahire	Maturo	Mahira	Mature	Mature	Mature	Semi-mature	Mature	Mature	Vennundule	Comi moture	Matura	Mature	Mature	Mature	Maturo	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	The second s	Mahira	Mature	Mature	Mature		Mature	Mature		Mature	Mature	
Good	Good	Good	Fair			e Good	Good	Fair	Fair		_	e Fair	e Good		Good	0000	Good	Good	Good	Good	e Good		Good	- Court	Good	Fair	Fair			Fair	Good	0000		Cood	Good	Fair	Fall		Good	Fair	Fair	Fair	Fair	Fair	Good	Good	Good	Good	0000	Good	Good	Good	Fair			Fair		Fair	Good	Current Vigou
Average	Average	Average	Poor		Poor	Average	Average	Poor	Poor	Daar	Average	Average	Poor		Average	- Tronge	æ		Good	Good	Average	Guu	Good	Average	D		Average	Average		Poor Exc	Average	ŝ	Average	Automotion	Average	Poor Ver		Door nieju	8	Poor	Average	Averace		Average	Good	Average	Good	Good	0000	Good	Good	Avelage	Suppressed	Commond	Average	Good			Good	Current Form
																		Excessively Pruned								Excessively Pruned				Excessively Pruned						Very Asymmetric Canopy	v Acompatio Canavi		or Inclusions			rmmetric Canopy	Excessively Pruned, Very														Canopy, Lean-Major	y Asymmetric		Noted Defects
Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Long (>40 years)	Luių (>40 yeais)	Long (>40 years)	Lorg (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Mealum (10-40 years)	Madium (4E 40 summ)	I ong (>40 years)	Lona (>40 years)	Long (>40 years)		Long (>40 years)	formed of A Brown	Long (>40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Luių (>40 yeais)	I om (>40 years)	Modium (15-00 vicene)	I nm (>40 vears)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Short (5-15 years)	Medium (15-40 years)	Long (>40 years)	Luig (~40 yeas)	I om (>40 years)	Modium (4E 40 second)	Medium (15-40 years)	Medium (15-40 years)	Modium (15-40 years)	Modium (15-40 yours)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 veers)	Medium (15-40 veers)	Long (>40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	I nm (>40 years)	formed on 3 formed	Lom (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Sinut (S-10 years)	Long (>40 years)	Long (>40 years)		Medium (15-40 years)	Long (>40 years)	SULE Rating
Low	Moderate	Low	Low	LOW	Low	Low	Low	Low	LOW		Low	Low	V Low / Remov		Low		Low	Low	Moderate	Moderate	V Low / Kemove	LOW	LOW	Low	l ow	Low	Low	Low	Low	Low	Moderate	A TOM / IVEILIONE	Low	-	Low	Low	Low	LOW	Low	Low	Low	Low	Low	Low	Moderate	Moderate	High	Moderate		Hinh	Low	mouerate	Low	LOW	Moderate	Moderate		Low	High	Retention Value
			Two trees planted close together.	Two trees planted cluse together.	Two trees planted close together			Two trees, planted as a hedge.		Then know whether an a body	Self sown in very narrow can		8	hedge.	Small trees, closely spaced, fomeny a	hedge.	Small trees, closely spaced, fomenty a				8			International Provide Second	Multitruck from base										Growing very close to carpark infrastructure.													ciuse lugarnar.	tree although probably 3 individuals planted	3 Internerwin trees in one Considered as on										General Comments and Notes
Exotic	Exotic	Native	Endemic		Endemic	Invasive	Exotic	Exotic	EXOLIC	Tracks	Native	Native	Invasive		Native	1100010	Native	Native	Native	Exotic	Invasive	LVOIC	Exotic	Evotio	Native	Endemic	Exotic	Native	Exotic	Endemic	Native		EXOUC		e. Exotic	Exotic	Exotic	Evolio	Exotic	Exotic	Exotic	Exotic	Exotic	Exotic	Endemic	Native	Native	Endemic		Endemic	Exotic	INduve	Native	EINBIIIC	Endemic	Native		Endemic	Endemic	
Small	Medium	Small	Small	Giidi	Small	Small	Small	Small	Smail	Caroli	Medium	Medium	Medium		Medium		Medium	Small	Large	Medium	Medium	Gilidii	Small	Cmall	Small	Small	Small	Small	Medium	Small	Small	mount	Modium	Monthing	Medium	Medium	Modium	Modium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Civic	Civic	ame		Marliim	Small	Laige	Large	Inno	Large	Civic		Large	Laroe	
Deciduous	Evergreen	Evergreen	Evergreen	Lveißigei	Everareen	Evergreen	Evergreen	Evergreen	Evergreen	E Linearen	Decidinus	Deciduous	Deciduous		Evergreen	- to growth	Everareen	Evergreen	Evergreen	Deciduous	Decidiatus	Lveigioeii	Evergreen	Everyment	Evernmen	Evergreen	Deciduous	Deciduous	Deciduous	Evergræn	Evergreen	Dervinimus	Decidious	Docideoso	Deciduous	Decidious	Decidious	Doviduouo	Deciduous	Deciduous	Decidinus	Deciduous	Deciduous	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen		Evernmen	Palm-SingleStem		Evergreen	Everyneen	Evergreen	Evergreen		Evergreen	Evergreen	
Remove	Retain	Remove	Remove	Naliova	Remove	Remove	Remove	Remove	Kemove	Demoire	Remove	Remove	Remove		Remove	1 MOLLON O	Remove	Remove	Retain	Retain	Remove	Nalijove	Remove	Pennoia	Remove	Remove	Remove	Remove	Remove	Remove	Retain	INCITIONE	Permove	D	Remove	Remove	Pomoto	Removo	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove			Stem Remove		Remove	Bomovio	Remove	Remove		Remove	Remove	

539	538	537	536	535	534	533	532	537	230	529	520	528	527	07C	525	7,07	524	523	522	521	520	519		518	517	510	514	513		512	511	510	509	508	507	506	505	504	503	502	501	500	498	497	496	495	494	493	492	491	430.2	2002	490.1	489	488	407.1	1 287	486	Tree ID
s	s	s	s	s	s	s	s	u		, u		s	s	U	n u	n c	0	s	s o	s	s	s	,	s o	in a	n u	, u		,	s	s	s	s o	s	s	0	s	s o	s	<i>.</i> , .	<i>.</i> , .	n u		, v	, v	s	s	s	s	s	۵	0	s	s	s	ທ່	n	s	Precinct
Laphostemon confertus	Laphostemon confertus	Laphostemon confertus	Platanus x acerifolia	Platanus x acerifolia	Plumeria rubra	Citrus limon cv.	Platanus x acerifolia	Fielditus x austriutid	Platanus x acentolia	Biotomus y accortation	Euclimfue holmuidee	Callistemon viminalis cv.	Olea europaea subsp. africana	muraya panuwata	Mimava nanimilata	Lonhostemon confertus	Jacaranda mimosifolia	Tilstaniopsis laurina	Findersia australis	Tristaniopsis laurina	Melia azedarach	Callitris rhomboidea?		Agonis flexuosa	Leptospermum petersonii	Annis flavursa	Annie flavinen	Cinneman september	Pastim ashiber	Cettis sinensis	Sapium sebiferum	Podocarpus elatus	Archontophoenix cunningfamiana	Archontophoenix cunninghamiana	Callistemon viminalis cv.	Eriobotrya japonica	Manoifera indica	Persea grafissima?	Platanus x acentolia	Cupaniopsis anacaroiodes	Melaleuca quinquenervia	weiaieuca quinquenervia	Agonis nexuosa	Agonis flexuosa	Eucalyptus saligna	q	Parsaa matissima	Persea grafissima	Casuarina cunninghamiana	Corymbia citriodora	Callistemon viminalis cv.	Callistemon viminalis cv.	Cinnamomum camphora	Tree Species					
Brush Box	Brush Box	Brush Box	London Plane	London Plane	Frangipani	Lemon	London Plane		London Dimo	Dariyaray	Bangalay.	Weeping Bottlebrush	Atrican Olive	multaya	Mirrava	Brush Box	Jacaranda	Water Gum	Crows Ash	Water Gum	White Cedar	Port Jackson Cypress		Willow Myrtle	Lemon Scented Tea Tree	Willow Myrtle	Willow Monte	Compton Laurol	Okianon Tallan Tana	Chinese Hackberry	Chinese Tallow Tree	Plum Pine	Bangalow Palm	Bangalow Palm	Weeping Bottlebrush	Loquat	Mango	Avocado	London Plane	luckeroo	Broad Leafed Paperbark	Broad Leated Paperbark	WIIIOW MYRIe	Willow Myrtle	Sydney Blue Gum		Avocado	Avocado	River She-Oak	Lemon Scented Gum	Weeping Bottlebrush	Weeping Bottlebrush	Camphor Laurel	Common Name					
MYRTACEAE	MYRTACEAE	MYRTACEAE	PLATANACEAE	PLATANACEAE	APOCYNACEAE	RUTACEAE	PLATANACEAE	T LA I ANAUEAE			MYDTACEAE	MYRTACEAE	OLEACEAE		RUTACEAE	MYRTACEAE	BIGNONIACEAE	MYRTACEAE	RUTACEAE	MYRTACEAE	MELIACEAE	CUPRESSACEAE		MYRTACEAE	MYRTACEAE	MYRTACEAE	MYDTACEAE	SAPINUACEAE	CADINDACEAE	ULMACAEAE	SAPINDACEAE	SAPINDACEAE	SAPINDACEAE	SAPINDACEAE	SAPINDACEAE	SAPINDACEAE	PODOCARPACEAE	ARECACEAE	ARECACEAE	MYRTACEAE	ROSACEAE	ANACARDIACEAE		PLAIANACEAE	SAPINUACEAE	MYRTACEAE	MTRIACEAE	MYRIACEAE	MYRTACEAE	MYRTACEAE			LAURACEAE	CASUARINACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	LAURACEAE	Family
15.0	15.0	15.0	20.0	20.0	3.5	2.5	20.0		14.0	12.0	13 1	6.0	2.0	į	40	14.0	12.0	9.0	12.0	9.0	4.0	10.0		14.0	8.0	10.0	10.0	450	5	6.0	4.0	4.0	4.0	6.0	9.0	6.0	11.0	9.0	9.0	9.0	6.0	6.0	9.0		s 0.0	18.0	10.0	10.0	10.0	25.0	į	12 0	12.0	22.0	22.0	7.0	7.0	6.0	Height (m)
0.40	0.40	0.40	0.80	0.80	0.30	0.10	0.80	0.00	0.10	0.30	5	0.15	0.10		0.15	0.25	0.30	0.40	0.40	0.40	0.10	0.30		0.90	0.40	1 10	0.50	0.10	ĥ	0.20	0.15	0.30	0.20	0.20	0.30	0.15	0.60	0.20	0.20	0.20	0.20	0.20	0.30	0.10	0.05	0.90	0.30	0.70	0.30	0.70		0 10	0.10	0.60	0.40	0.10	0.10	0.10	Trunk Diameter at Breast Height (dbh) (m)
0.50	0.50	0.50	0.95	0.95	0.30	0.10	0.95	0.00	0.00	0.90	0.80	0.20	0.10	0.20	0 20	0.30	0.40	0.50	0.50	0.50	0.15	0.40		1.10	0.50	1.30	0.80	4 40	200	0.30	0.20	0.30	0.30	0.30	0.50	0.20	0.70	0.20	0.20	0.20	0.20	0.20	0.30	0.10	0.05	1.00	0.30	0.80	0.50	0.90		0.15	0.15	0.80	0.45	0.10	0.10	0.20	Trunk Diameter at base (dg) (m)
4.80	4.80	4.80	9.60	9.60	3.60	2.00	9.60	b.UU	0.40	0.00	C.00	200	2.00	2.00	300	200	360	4.80	4.80	4.80	2.00	3.60		10.80	4.80	13 20	10.80	2.00	8	2.40	2.00	3.60	240	2.40	3.60	200	7.20	240	2.40	240	240	3 40	3.60	2.00	2.00	10.80	3.60	8.40	3.60	8.40	2.00	3	2.00	7.20	4 80	200	300	2.00	Nominal TPZ radius (m) 12xdbh (AS 4970)
2.47	2.47	2.47	3.24	3.24	2.00	1.26	3.24	210	3.01	702	1.00	168	1.26	1.00	4 60	200 0	202	2.47	2.47	2.47	1.49	2.25		3.44	3.0 3 9.47	107	3.44	1.68	8	2.00	1.68	2.00	200	2.00	2.47	168	2.85	168	1.68	168	168	168	2.00	1.26	0.94	3.31	2.13	3.01	2.47	3.17	1.40	1	1.49	3.01	2.37	1.20	1 26	1.68	Nominal SRZ radius (m) (AS 4970)
Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Matura	Matura	Matura	Mature	Sem-mature	mature	Maturo	Mature	Mature	Mature	Mature	Mature	Young	Mature		Mature	Mature	Maturo	Matura	Mature	Matura	Semi-mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Young	Young	Mature	Mature	Mature	Mature	Mature		Mature	Mature	Mature	Mature	Semi-mature	Semi-mature	Young	Age Class
Good	Good	Good	Good	Good	Good	Fair	Good	GUUU		- Food	Door	Fair	Good	0000	Good	Fair	Fair	Good	Good	Good	Good	Good		Poor	Fair	Fair	Fair	Fair	Tais	Good	Fair	Good	Good	Good	Good	Good	Fair	Good	Good	Fair	Good	Good	Fair	Good	Good	Fair	rair	Good	Fair	Good	i	Fair	Fair	Good	Fair	Fair	Fair	Good	Current Vigour
Poor	Poor	Poor	Average	Average	Average	Average	Average	Average	Amongo	Amorano	Aviorana	Average	Poor	- Andrew	Averane	Poor	Poor	Average	Good	Average	Average	Poor			Average	Averane	Averano	Poor	Dave	Poor	Poor	Poor	Poor	Poor	Poor	Poor	Average	Good	Good	Poor	Average	Average	Average	Good	Good	Average	Poor	Poor	Poor	Good		Averane	Average	Good	Average	Average	Average	Poor	Current Form
Excessively Pruned	Excessively Pruned	Excessively Pruned													notine for the second	Excessively Pruned						Very Asymmetric Canopy, Lean-Major	Asymmetric Canopy	Excessively Pruned, Very				Excessively Pruhed	Executively Demond								Excessively Pruned						Major Lip Lieback	Major Tio Diabaak		Major Inclusions	very Asymmetric Lanopy	Excessively Pruned											Noted Defects
Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Luig (>40 yeas)	Long (>40 years)	I om (>40 your)	Modium (15.40 years)	Medium (15-40 years)	Long (>40 years)	(classic number of the second	Mertium (15-40 veers)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Replaceable (Small/Young)	Long (>40 years)		Short (5-15 years)	Medium (15-40 years)	Long (>40 years)	Jom (>/I) yeas)	Chort (E 1E vices)		Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Merlim (15.40 years)	Chort /E 15 work)	Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)		I om (>40 vears)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 veers)	Long (>40 years)	SULE Rating
Low	Low	Low	Moderate	Moderate	Low	Low	High	ngin	ußiu	LOW		Low	V Low / Remove	LOW	l ow	low	Low	Moderate	High	Moderate	Low	Low		Low	Low	LOW LOW	LOW	Low		V Low / Remove	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	LOW	Low	Low	High		Inw	Low	High	Moderate	Low	Low	V Low / Remove	Retention Value
Closely spaced group of 4.	Closely spaced group of 4.	Closely spaced group of 4.											<u> </u>									Very close to building wall. Asymmetric canopy.								8																					wall.	Wall. Two trees mowing year close to adjoining	Two trees growing very close to adjoining					8	General Comments and Notes
		Native	Exotic	Exotic	Exotic					2		Native	Invasive								Native	Native			Native		a			e	Exotic											Exotic				S.	Endemic					Exotio					Native	Invasive	Tree Origin
Medium	Medium	Medium	Large	Large	Small	Small			Laiya	Laige	9700	Small	Small		Small		з		Medium		Medium	Small		в	Small	Madium		п		Medium	Medium						Medium	Small	Small	Small			Medium		Small	Medium	Meaium					Marliim	Medium	Medium	Civic	Small	Small	Large	Ultimate Tree Size
Evergreen	Evergræn	Evergreen	Deciduous	Deciduous	Deciduous	Evergreen	Deciduous	nmman	Deviduous	Dovidious	Everyroon	Evergreen	Evergreen		Evernmen	Everareen	Deciduous	Evergreen	Evergreen	Evergræn	Deciduous	Conifer		Evergræn	Evergreen	Evernmen	Evergreen	Deciduous	Decidence	Deciduous	Deciduous	Deciduous	Deciduous	Deciduous	Deciduous	Deciduous	Conifer	Palm-SingleStem	Palm-SingleStem	Evergreen	Evergreen	Everareen	Evergreen	Deciduous	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen		Evernmen	Evergræn	Evergreen	Evergreen	Evergreen	Everareen	Evergreen	Tree Type
Remove	Remove	Remove	Remove	Remove	Remove	Remove	Retain	Netalli	Betrin	Domotio	Damoia	Remove	Remove	Naliiova	Remove	Remove	Remove	Retain	Retain	Retain	Remove	Remove		Remove	Remove	Remove	Demove	Demotio		Remove	Remove	Remove	Remove	Remove	Remove	Remove			_	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Kemove	Remove	Remove	Remove		Remove	Remove	Remove	Remove	Remove	Remove	Remove	Planning Proposal Recommendation

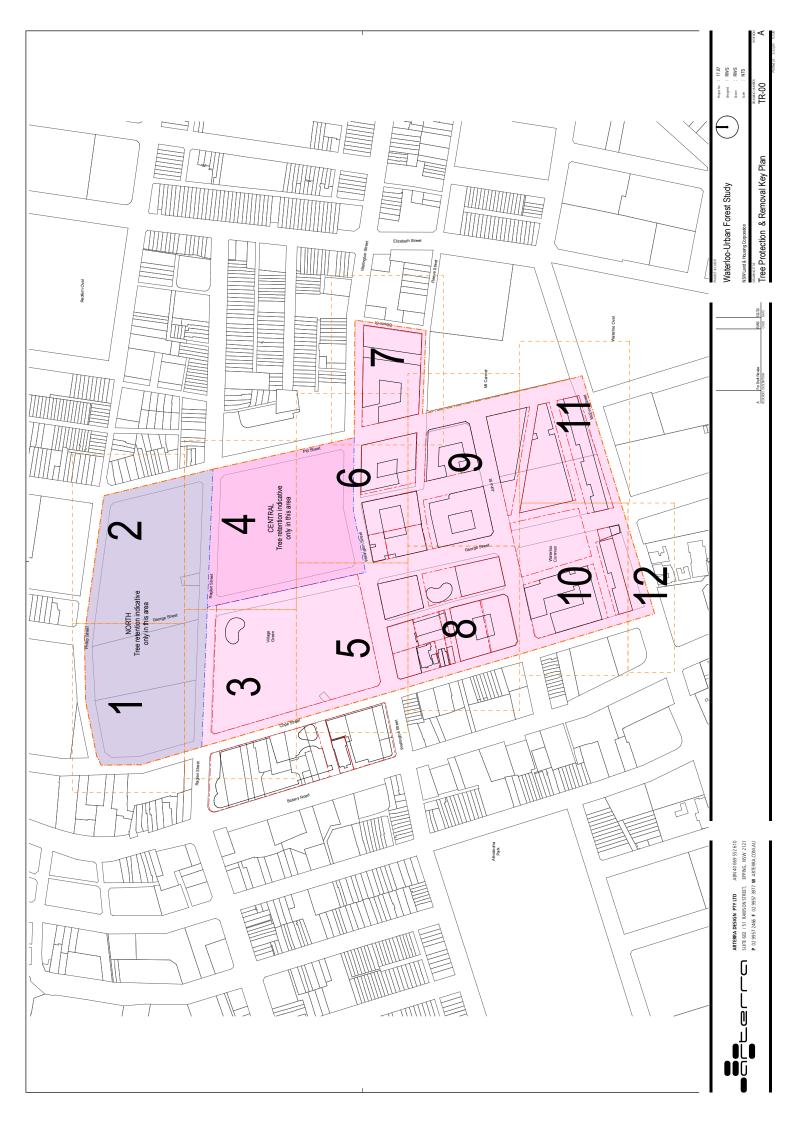
591	590	589	000	100	507	596	585	584	583	582	100	501	580	579	578	110	370	576	575	574	515	572	572	571	570	690	568		700	607	566	565	564	202	200	50	561	560	559	558	557	556	555	554	202	202	557	200		549	548	547	546		545	544	543	542	541	540	Tree ID
s	s	S		n u		0	s	s	s	s			s	s	s			0	s	s	6	<i>~</i>	20	s	s	U.	s	,	U	•	s	s	s		, u	, u	0	s	s	s	s		s	S		, u	, v	n u		s	'n	s	U.		s	s	s	s	s	s	Precinct
Corymbia maculata	Casuarina cunninghamiara	Grevillea robusta	Jazarahua IIIIIIAsiiUNa	Janaranda minneifolia	Finalinfus emparia	Agonis flexuosa	Eucalyptus scoparia	Eucalyptus scoparia	Platanus x acerifolia	utrus limon ov.	Coolumna commignationada	Casuarina cuminnhamiana	Laphostemon confertus	Eucalyptus scoparia	Melaleuca quinquenervia	Eucaryprus superio	Encolution cooperio	Eucalynfus sconaria	Eucalyptus botryoides	Agonis flexuosa	, Goran analysis	Agonis flexuosa	Agonis flexuosa	Agonis flexuosa	Eucalyptus bdryoides	Eucalypius puryones	Eucalyptus borryoides	Prove a front of the data of the data of	Eucarypius puryones	Finalizative hotopiadae	Eucalyptus botryoides	Agonis flexuosa	Agonis flexuosa	Muus nexusa	Eucalyptus puryones	Eucolutus hotaidos	Fucalivatus hatronides	Eucalyptus botryoides	Eucalyptus bdryoides	Eucalyptus borryoides	Araucana columnans	Araucana coumnans	Agonis flexuosa	Agonis nexuosa	Lunusternur cumertus	Laphosternon confertus	Aguns nexusa	Annie florunea	Annie flavinea	Agonis flexuosa	Laphostemon confertus	Agonis flexuosa	Aguns nexuosa	Annie flavunea	Agonis flexuosa	Agonis flexuosa	Eucalyptus robusta	Laphostemon confertus	Platanus x acerifolia	Laphostemon confertus	Tree Species
Spotted Gum	River She-Oak	Silky Oak	vacai al lua	Jacaranda	Wallangarra White Gum	Willow Myrtle	Wallangarra White Gum	Wallangarra White Gum	London Plane	Lemon	INTEL OIL-OWN	River She-Oak	Brush Box	Wallangarra White Gum	Broad Leated Paperbark			Wallangarra White Gum	Bangalay	Willow Myrtle		Willow Myrtle	Willow Myrtle	Willow Myrtle	Bangalay	bangalay	Bangalay		Dangaray	Rannalav	Bangalay	Willow Myrtle	Willow Myrte	WITOW Myrue	Dangalay Willow Months	Dangalay	Bancialav	Bangalay	Bangalay	Bangalay	Cook Pine	Cook Pine	Willow Myrde	WILLOW MYFTE	DIUSII DOX	Brush Box	Brush Box	Willow Myrtle	Willow Murile	Willow Myrtle	Brush Box	Willow Myrtle	valiow myrue	Willow Morths	Willow Myrtle	Willow Myrtle	Swamp Mahogany	Brush Box	London Plane	Brush Box	Common Name
MYRTACEAE	CASUARINACEAE	PROTEACEAE	BIGINONIACEAE	RIGNONIACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	PLATANACEAE	RUIACEAE		CASUARINACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE		MUDTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE		MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MINIACEAE	MYRIACEAE			MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRIACEAE		MYRTACEAE	MYDTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRIACEAE	ARAUCARIACEAE	ARAUCARIACEAE	MYRTACEAE	MYKIACEAE		MYDTACEAE	MYRTACEAE	MYRTACEAE	MYPTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MTRIACEAE	MYDTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	PLATANACEAE	MYRTACEAE	Family
12.0	22.0	7.0	0.0	10.0	18.0	9.0	16.0	10.0	18.0	3.5	2	220	12.0	15.0	9.0	0.0	10.0	16.0	14.0	7.0		9.0	8.0	8.0	15.0	12.0	12.0	2	12.0	13 0	12.0	8.0	9.0	0.0	2 19.0	10 0	80	22.0	22.0	22.0	20.0	20.0	10.0	10.0	10.0	15.0	15.0	9 N.0	10 0	10.0	15.0	10.0	9.0	8	10.0	10.0	15.0	15.0	18.0	15.0	Height (m)
0.50	0.50	0.15	0.20	0.05	0.80	0.60	0.70	0.40	0.80	0.10	0.00	0.50	0.20	0.70	0.10	0.30	0.00	0.50	0.50	0.30		0.70	0.50	0.50	0.50	0.30	0.20	8	0.20	0,00	0.20	0.70	0.70	0.40	0.00	9.50	0 15	0.40	0.40	0.40	0.40	0.40	0.70	0.70	0.30	0.30	0.30	0.00	9	0.90	0.40	0.90	0.50	5	0.40	0.90	0.40	0.40	0.60	0.40	Trunk Diameter at (dbh) (m)
0.60	0.60	0.25	0.00	0.30	2	0.70	0.70	0.45	0.95	0.10	0.00	0.80	0.25	0.70	0.10	0.40	0.40	0.60	0.60	0.40		0.80	0.60	0.60	0.60	0.30	0.30	2	0.00	6	0.30	0.80	0.80	0.00	0.70	0.70	0 20	0.50	0.50	0.50	0.50	0.50	0.80	0.80	0.30	0.25	1.20	1 20	1 22	1.20	0.50	1.20	0.70	0.20	0.60	1.20	0.50	0.50	0.80	0.50	Trunk Diameter at base (dgl) (m)
6.00	6.00	2.00	3.00	3 12	7 20	7 20	8.40	4.80	9.60	2.00	0.00	2 2	2.40	8.40	2.00	3.60	0.00	200	6.00	3.60	0.40	8 /0	600	6.00	6.00	3.60	2.40		2.40	2	2.40	8.40	8.40	4.80	6.00	2.00	3 8	4.80	4.80	4.80	4.80	4.80	8.40	8.40	3.60	3.50	08.01	10.00	10 00	10.80	4 80	10.80	6.00	8	4.80	10.80	4.80	4.80	7.20	4.80	Nominal TPZ radius (m) 12xdbh (AS 4970)
2.67	2.67	1.85	200	201	20.2	282	2.85	2.37	3.24	1.26	107	730	1.85	2.85	1.26	2.25	201	220	2.67	2.25	0.01	201	282	2.67	2.67	2.00	2.00		2.00	3	2.00	3.01	3.01	20/	282	1.00	1 20	2.47	2.47	2.47	2.47	2.4/	3.01	3.01	213	213	3.5/	3 C2			2 47	3.57	C8 .7		2.67	3.57	2.47	2.47	3.01	2.47	Nominal s SRZ radius (m) (AS)) 4970)
Mature	Mature	Sem-mature		Semi-matur	Maturo	Mature	Mature	Mature	Mature	Mature	maturo	Mature	Semi-mature	Mature	Sem-mature	Matura	Moduro	Mature	Mature	Mature		Mature	Mature	Mature	Mature	Mature	Mature		matule	Matura	Mature	Mature	Mature	Malua	Mature	Maturo	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Malula	Maturo	Matura	Maturo	Matura	Mature	Mature	Mature	Mature	Matura	Mature	Mature	Mature	Mature	Mature	Mature	Age Class
Good	Good	Poor			Fair	Fair	Good	Fair	Good	Poor			Good	Fair	e Fair		E at	Good	Fair	Fair		Moribund	Fair	Fair	Good	rai	Fair	7	MUIDIN	Monihumo	Fair	Good	Good	Guu	rai		Poor	Fair	Good	Good	Good	Good	Fair	Good			Fair	Good	Good	Good	Fair	Good	raii	n ai	Fair	Good	Fair	Good	Good	Good	Current Vigour
Good	Good	Poor	, is	Poor	Δ.viorano	Average	Average	Poor	Average	Average	0000	Good	Average	Average	Average	Avelage	Automoto	Averace	Average	Poor		-	Average	Average	Average	Foo	Poor		naccaldino		Poor	Average	Average	Avelage	Average	Amon	Sinnressed	Average	Good	Average	Good	6000	Poor	Poor			Door	Δ.viorano	Δ.vorano	Average	Poor	Average	1001	Door	Poor	Average	Average	Poor	Average	Poor	Current Form
		Excessively Pruned											Excessively Pruned								terreteren der referer	Maior Tip Dieback				very Asymmetric Cardpy			Major Tip Dieback		Very Asymmetric Canopy							Very Asymmetric Canopy					Very Asymmetric Canopy, Excessively Pruned	Very Asymmetric Lanopy	V				Canopy, Lean-Major	Very Asymmetric		Very Asymmetric Canopy	very Asymmetric Cardpy	Van' Asymmetric Canony	Very Asymmetric Canopy			Excessively Pruned		Excessively Pruned	Noted Defects
Lorg (>40 years)	Long (>40 years)	Remove (<5 years)	mouluii (10440 yozis)	Medium (15-40 years)	Marline (15.40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Long (>40 years)	Short (5-15 years)	Charl (F 4F)	I nm (>40 vears)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Loig (>40 years)	Long (> 10 yound)	Long (>40 years)	Long (>40 years)	Long (>40 years)	fame far harmen	Remove (<5 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Luig (~40 years)	Long (>40 years)		ondi (onio yeas)	Short (5.15 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)		Medium (15-40 veers)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	SINUL (3-13 years)	Chort (5.15 years)	Long (>40 years)	Long (>40 years)	Low (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)		Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	SULE Rating
High	Moderate	V Low / Remove	LOW	Low.	l nu	Low	Moderate	Low	Moderate	Low		Moderate	Moderate	Low	Low	mouerate	Moderate	Moderate	Moderate	Low		V Low / Remove	Low	Low	High	LOW	Low		A TOM / IVEIIIOAE	V Inw / Remove	Low	Low	Low	LUW	moderate	Modorato	low	Low	High	Moderate	High	ngin	Low	LOW	LUW	LOW	LOW	Low	Dow	Low	Low	Moderate	LOW	Dem	Low	Moderate	Moderate	Low	Moderate	Low	Retention Value
																																																												Closely spaced group of 4.	General Comments and Notes
Native	Native	Invasive		Fyntic	Nativo	Native	Native	Native	Exotic	Exotic	THOUT	Native	Native	Native	Endemic	INDIA	Motion	Native	Endemic	Native		Native	Native	Native	Endemic	Endernic	Endemic	-		Endomin	Endemic	Native	Native	INDIA	LINGEINC	Endomin	Endemic	Endemic	Endemic	Endemic	Exotic	EXOLC	Native	Native	INGUIVE	Nativo	Nativo	Nativo	Nativo	Native	Native	Native	Native	Nation	Native	Native	Endemic	Native	Exotic	Native	s Origin
Large	Medium	Large	IIIIII	Madium	Marliim	Medium	Medium	Medium	Large	Small		Medium	Medium	Medium	Medium	meuluii	Modium	Medium	Large	Medium		Medium	Medium	Medium	Large	Laige			Laiya	amp	Large	Medium	Medium	meuluii	Large			Large	Large			CIVIC	Medium	Medium	Mediuli	Modium	Madium	Marlium	Morlium	Medium	Medium	Medium	Medium	Modium	Medium	Medium	Medium	Medium	Large	Medium	Ultimate Tree Size
Evergreen	Evergræn	Evergreen	Decidiona	Decidinis	Evergreen	Everareen	Evergreen	Evergreen	Deciduous	Evergreen	Lindian	Evernreen	Evergreen	Evergreen	Evergreen	L And And	E torgroom	Everareen	Evergreen	Evergræn		Everareen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen		LvaiAirei	Evernmen	Evergreen	Evergræn	Evergreen	L And And	Evergreen	European	Everareen	Evergreen	Evergreen	Evergræn	Coniter	Contrer	Evergræn	Evergreen	Evelôieei	Everyland	Evergreen	Evergreen	Eviernieen	Evergreen	Evergreen	Evergræn	Evergreen	Eventoon	Evergreen	Evergreen	Evergræn	Evergreen	Deciduous	Evergreen	e Tree Type
Retain	Remove	Remove		Remove	Remove	Remove	Remove	Remove	Remove	Kemove		Remove	Remove	Remove	Remove		Domotio	Remove	Retain	Remove		Remove	Remove	Remove	Remove	Relificite	Remove		Nelliove	Pamoia	Remove	Remove	Kemove		Relliove	Domouo	Remove	Remove	Remove	Kemove	Retain	Ketain	Remove	Kemove		Domono	Demove	Ramova	Pamoia	Remove	Remove	Remove	Kelliove	Demoire	Remove	Remove	Retain	Remove	Retain	Remove	rpe Plann Recoi
		_													2																							-	-														-								Planning Proposal Recommendation

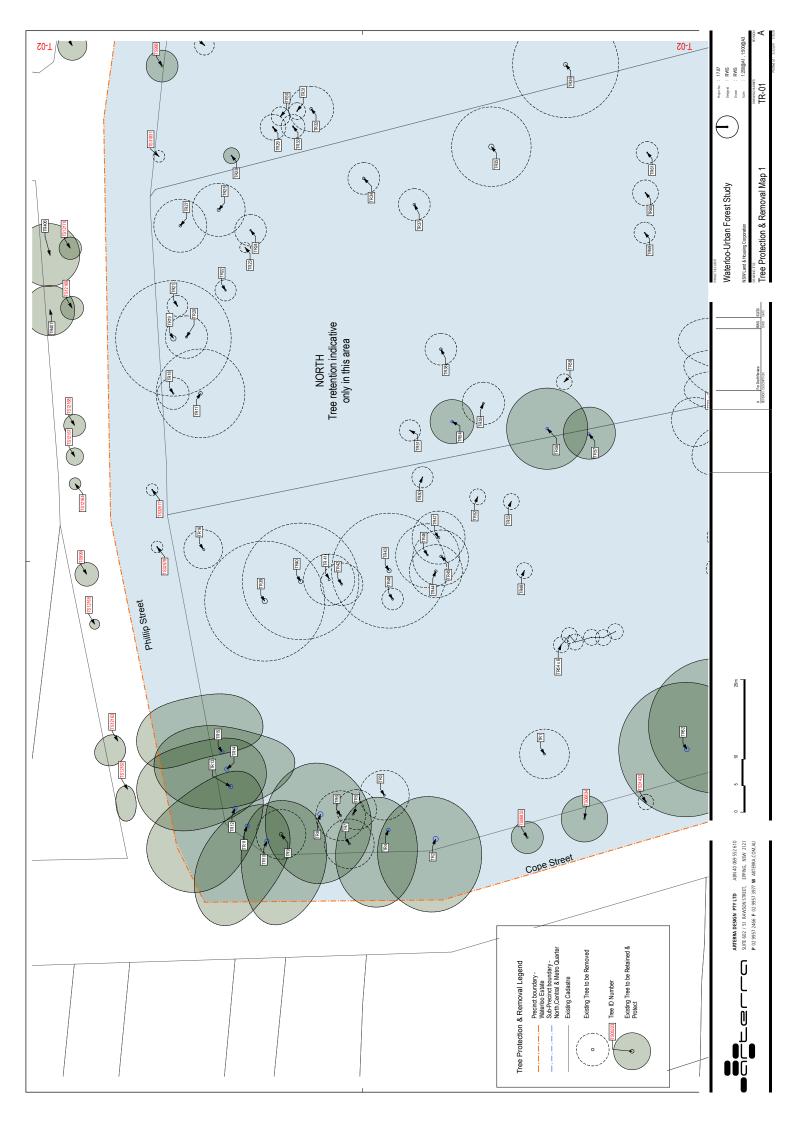
960	959	806	1CF	956	955	954	cce	902	050	951	026	949		948	947	945	DAE	944	943	942	941	939	826	825	824	823	822	821	820	819	818	817	816	815	814	813	812	811	810	809	909 708	908	805	804	803	602	601	600	599	297	04C	CRC	594	593	592	Tree ID
S	s	v	, u		s	s		, u	0 0	s	S	s	,	s	s o	ω u	0	s	s	s	ω u	n u	, v	, ,	s s	s	s	s	s	s	s	s	s	s o	<i>s</i> 0	s	<i>.</i>	0	s	ω u	n u	, v	o o	s	s	s	s	s	<i>.</i>	n u	n u	, u	o o	s	s	Precinct
Casuarina curninghamiana	Casuarina glauca	Casuanna giauca	Costantina granca	Platanus x ademonia	Platanus x aceritolia	Hatanus x acentolia	natanus x acomona	Diatanue y acontalia	Platanus y acentolia	Platanus x acerifolia	Ficus microcapa var. hilli	ricus microcapa var. niili	100 miles	Eucalyptus bicostata	Melaleuca quinquenervia	Oupressus torulosa	Fine minnenna var hilli	Ficus microcapa var. hillii	Eucalyptus bicostata	Eucalyptus bicostata	Eucalyptus bicostata	Fucal/ntus hinostata	Eiver microcorps him	Casuanna cumingnamana	Casuanna cumunghamiana	Casuarina curninghamiana	Casuarina curninghamiana	Callistemon viminalis cv.	Casuarina cuminghamiana	Casuarina cuminghamiana	Casuarina cuminghamiana	Casuarina cunninghamiana	Casuarina curninghamiana	Eucalyptus microcorys	Eucalyptus saligna	Corymbia maculata	Corymbia maculata	Eucalyptus microcorys	Olea europaea subsp. africana	Robinia pseudoacacia 'Frisia'	Ficus benjamina	Eriobotrya japonica	Corvmbia maculata	Glantisia triananthos	Svanus mmanzoffiana	Magnolia grantiflora	Waterhousea floribunda	Corymbia maculata	Tree Species							
River She-Oak	Swamp She-Oak		Crean Cho Och	London Plane	London Plane	London Plane		London Plane	London Plane	London Plane	Hills Weeping Fig	Hills weeping rig		Southern Blue Gum	Broad Leafed Paperbark	Bhutan Cypress	Hills Weening Fig	Hills Weeping Fig	Southern Blue Gum	Southern Blue Gum	Southern Blue Gum	Southern Blue Gum	Hills Wooping Eig	River She-Uak	River She-Uak	River She-Oak	River She-Oak	Weeping Bottlebrush	River She-Oak	River She-Oak	River She-Oak	River She-Oak	River She-Oak	Tallowood	Sydney Blue Gum	Spotted Gum	Spotted Gum	Tallowood	African Olive	Black Locust	Weeping Fig	Loquat	Spotted Gum	Honey Locust	Dueen Palm ARECACEAE	American Bull Bay Magnol MAGNOLIACEAE	Weeping Lilly Pilly	Spotted Gum	Common Name							
CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	CAGILADINACEAE	PLAIAWACEAE	PLATANACEAE	PLATANACEAE			PLATANACEAE	PLATANACEAE	MORACEAE	MURACEAE	1			CUPRESSACEAE	MORACEAE	MORACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MOBACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	MYRTACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRIACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	OLEACEAE	FABACEAE	MORACEAE	ROSACEAE	MYRTACEAE	FARACEAE	ARECACEAE	MAGNOLIACEAE	MYRTACEAE	MYRTACEAE	Family
12.0	12.0	12.0	100	13.0	15.0	15.0	à	15.0	15 0	15.0	18.0	18.0	2	19.0	7.0	10.0	200	20.0	21.0	20.0	20.0	20.0	20.0	12.0	12.0	12.0	12.0	6.0	15.0	14.0	15.0	13.0	15.0	18.0	17.0	17.0	12.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	9.0	9.0	7.0	7.0	11.0	10 0	80	7.0	9.0	12.0	Height (m)
0.30	0.30	0.30	0.00	0.30	0.40	0.40	0.00	0.30	040	0.50	1.20	1.20	200	0.80	0.40	0.40	1 20	1.20	0.80	0.60	0.60	0.60	100	0.20	0.30	0.30	0.40	0.10	0.40	0.30	0.40	0.30	0.40	0.60	0.70	0.70	0.30	0.70	0.70	0.60	0.80	0.80	0.50	0.60	0.70	0.30	0.20	0.30	0.20	0.35	0.35	0 20 2	0.20	0.40	0.35	Trunk Diameter at Breast Height (dbh) (m)
0.40	0.40	0.40	5	0.40	0.40	0.50	0.70	0.00	0.50	0.60	1.20	1.20		1.00	0.50	0.40	1 20	1.20	1.00	0.80	0.80	0.70	1.20	0.30	0.40	0.40	0.50	0.15	0.50	0.40	0.50	0.40	0.50	0.70	0.90	0.90	0.40	0.80	0.90	0.70	0.90	0.90	0.70	0.80	0.90	0.40	0.25	0.50	0.30	0.40	0.40	0.30	0.20	0.50	0.40	Trunk Diameter at base (dg) (m)
3.60	3.60	3.60	3.00	3.60	4.80	4.80	0.00	4.00	4 00	600	14.40	14.40		9.60	4.80	4.40	11 10	14.40	9.60	720	720	7200	7.20	2.40	3.60	3.60	4.80	2.00	4.80	3.60	4.80	3.60	4.80	720	8 40	8.40	360	840	8.40	720	9.50	9.60	6.00	7.20	8.40	3.60	2.40	3.60	240	4.20	4.20	2.00	2.40	4.80	4.20	Nominal TPZ radius (m) 12xdbh (AS 4970)
2.25	2.25	c7.72	c2.7	2.25	2.25	2.47	C77	241	240	267	3.57	3.57		3.31	247	2 0.07	3	3.57	3.31	301	301	3.5/	2.85	2.00	2.25	2.25	2.47	1.49	2.47	2.25	2.47	2.25	2.47	2.85	3 17	3.17	2 25	301	3.17	285	3.1/	3.17	2.85	3.01	3.17	2.25	1.85	247	200	200	2 CC	3 NO	1.68	2.47	2.25	SRZ radius (m) (AS 4970)
Mature	Mature	Mature	Matura	Sem-mature	Semi-mature	Sem-mature	Commission	Comi-moture	Semi-mature	Semi-mature	Mature	Mature		Mature	Mature	Mature	Nature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Semi-mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Semi-mature	Mature	Semi-mature	Semi-mature	Mature	Mature	Maturo	Mature	Semi-mature	Mature	Mature	Age Class								
Fair	Fair	rall	E Good						-	Good	Good	6000		Good	Fair	Good	Excellent	Fair	Good	Fair	Fair	Good	6000	Tair	Fair	Fair	Fair	e Fair	Fair	Fair	Fair	Fair	Fair	Good	Good			Good	Good	Fair	Good	600	Fair	Good	Good	Good			Good	Fair	Good	Good			Good	Current Vigour
Poor	Average	Analoga	-	Poor	Average	Average	Trologo	Aviarana	Average	Average	Poor	Poor	2	Poor	Poor	Average	-	Poor	Average	Average	Average	Poor	Average	Poor	Poor	Poor	Poor	Average	Average	Average	Average	Poor	Average	Average	Average	Average	Suppressed	Good	Average	Average	Averane	Average	Suppressed	Average	Average	Average	Poor	Average	Average	Poor	Averane	Good	Good	Good	Average	Current Form
Very Asymmetric Canopy	Very Asymmetric Canopy	vely Asymmetric Gardyy	Canopy, Major Inclusions	Van Anomatin							Very Asymmetric Canopy	very Asymmetric Canopy	Trunk Cracks/Splits	Excessively Pruned,			Canopy, Major Inclusions	Very Asymmetric																						Excessively Pruned	Excessively Filling	Excessively Dramod														Noted Defects
Lorg (>40 years)	Lorg (>40 years)	meaiuii (io-40 yeais)	Modium (4E 40 umon)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (= 40 years)	Long (>AD years)	Inm (>40 years)	Lorg (>40 years)	Lorg (>40 years)	Long (>40 years)		Long (>40 years)	Long (>40 years)	Medium (15-40 years)	I nm (>40 years)	Short (5-15 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Long (>40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	SULE Rating
Low	Low	LOW	101	Low	Moderate	Moderate	LOW	Increase	Moderate	Moderate	Moderate	Moderate		Low	Low	Low	Hinh	Low	Moderate	Moderate	Moderate	low	High	Low	Low	Low	Low	Low	Low	Low	Low	Low	Low	High	High	High	Low	High	Moderate	Moderate	Moderate	High	Moderate	High	High	Low	Low	Low	Low	Low	l ow	Incurate	Moderate	High	Moderate	Retention Value
																																																								General Comments and Notes
Native	Endemic	EINHIIC	Endonio	Exolic	Exotic	EXOLIC		Evotio	Exotic	Exotic	Native	Native		Native	Endemic	Exotic	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Invasive	Exotic	Exotic	Exotic	Native	Exotio	Fxotic	Exotic	Native	Native	Tree Origin
Medium	Medium	MEGIUII	Modium	Large	Large	Large	Laiyo	larna	arne	Large	Civic	CIVIC	2	Large	Medium	Small	Civic	Civic	Large	Large	Large		Large	Medium	Medium	Medium	Medium	Small	Medium	Medium	Medium	Medium	Medium	Large	Civic	Large	Large	Large	Large	Large	Large	Large	Large	Large	Large	Small	Medium	Large	Small	Laroe	Marfiim	Small	Small	Medium	Large	Ultimate Tree Size
Evergreen	Evergreen	Eveldimen	E reigioni	Decidious	Deciduous	Decidious		Danidimie	Decidimis	Deciduous	Evergreen	Evergræn	1	Evergræn	Evergreen	Conifer	Evernmen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Deciduous	Evergreen	Evergreen	Everareen	Decidinals	Palm-SingleStem	Evergreen	Evergreen	Evergreen	e Tree Type
Remove	Remove			Remove	Remove	Kemove		Dam	Remove	Remove	Remove	Kemove	2	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove		Stem Remove	Remove	Reta	Reta	
love	love	IOVE		love	love	love	1000	0/6	OVA	ove	love	love		ove	ove	OVe	CN/P)OVe	love	ove	ove	OV9	love	love	love	love	love	love	90Ve	ove	9V0	iove	jove	ove	ove	ove	ove	OVe	ove	ove	IOVE	love	nove	love	IOVE	iove	9V0	love	OVe	OVB	OVP.	200	love	'n	un .	Planning Proposal Recommendation

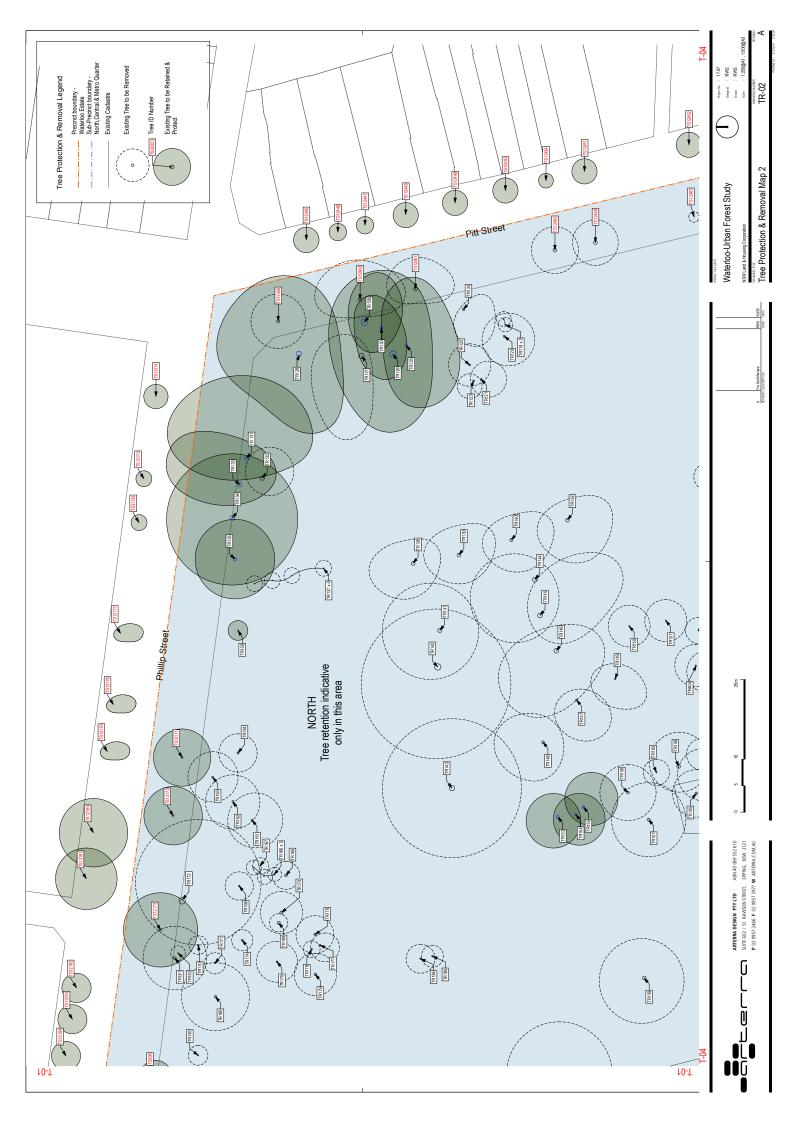
8989	6867	6866	6865	6864	6863	6854	6853	2000	6053	6851	6847	6846	6845	6844	0070	6843	6842	6841	6840	6839	6838	6837	6836	6835	6784	6783	6782	6781	6780	6/79	JEG	106	006	980	085	984		983	680	981	980	979	826	977	976	975	974	2	973	972	971	076	969	896	967	966	965	964		963	962	Tree ID
s o	20	s	s	s	s	S				2	s	s	s			20	ŝ	s	s	s	s	s	s	s	s	s	s	s	s		, u	, u	n u	<i>n</i> 0	'n	s		<i>s</i> 0	s	s	s	s	s	s	s	s	s	,	s	s	s	s	s	s	s	s	s	s		s	s	Precinct
Corymbia eximia	Eucalyptus sideroxylon	Eucalyptus punctata	Platanus x acerifolia	Platanus x aceritolia	Platanus x acentolia	Platanus x acentowa	Platanus x atemutia	Wedness is another	Funalizative sidemaulon	Eucalyptus sideroxylon	Corymbia eximia	Corymbia eximia	Corymbia exima	Eucaypus muloculys	Einstinfus mismoonis	Eucalyptus microcorys	Corymbia eximia	Eucalyptus microcorys	Eucalyptus sideroxylon	Eucalyptus microcorys	Eucalyptus microcorys	Eucalyptus sideroxylon	Eucalyptus camaldulensis	Eucalyptus sideroxylon	Laphostemon confertus	Laphostemon confertus	Laphostemon confertus	Laphostemon confertus	Laphostemon confertus	Cultarindusis anacardinidas	Currentinesis monominides	Landaypias menourys	Funaluntus micmonus	Brachvchiton acerifolius	Svzvoium pariculatum	Eucalyptus microcorys		Eucalyptus microcorys	Eucalyptus microcorys	Syzygium paniculatum	Syagrus romanzoffiana	Howea forsteilana	Araucaria heterophylla	Eucalyptus microcorys	Eucalyptus microcorys	Eucalyptus microcorys	Melaleuca quinquenervia	Malalanaa animu maanin	Ficus microcapa var. hilli	Platanus x acerifolia	Eucalyptus bicostata	Casuarina curninghamiara	Casuarina cunninghamiana	Casuarina cunninghamiana	Platanus x acerifolia	Corymbia citriodora	Melaleuca quinquenervia	Eucalyptus bicostata		Eucalyptus bicostata	Eucalyptus bicostata	Tree Species
Yellow Bloodwood	Mugga Ironbark	Grey Gum	London Plane	London Plane	London Plane	London Plane	London Plane		Murra Ironhark	Mugga Ironbark	Yellow Bloodwood	Yellow Bloodwood	Yellow Bloodwood		Tallowood	Tallowood	Yellow Bloodwood	Tallowood	Mugga Ironbark	Tallowood	Tallowood	Mugga Ironbark	River Red Gum	Mugga Ironbark	Brush Box	Brush Box	Brush Box	Brush Box	Brush Box	IUCABIOO	Tickeroo	Brieh Boy	Tallowood	Ulawarra Flame Tree	Magenta Cherry	Tallowood		Tallowood	Tallowood	Magenta Cherry	Queen Palm	Kentia Palm	Norfolk Island Pine	Tallowood	Tallowood	Tallowood	Broad Leated Paperbark	Descal I safed Descettant	Hills Weeping Fig	London Plane	Southern Blue Gum	River She-Oak	River She-Oak	River She-Oak	London Plane	Lemon Scented Gum	Broad Leafed Paperbark	Southern Blue Gum		Southern Blue Gum	Southern Blue Gum	Common Name Rough-barled Apple
MYRTACEAE	MYRTACEAE	MYRTACEAE	PLATANACEAE	PLATANACEAE	PLATANACEAE	PLATANACEAE	PLAIANACEAE		MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRIACEAE		MYDTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	SAFINDACEAE	SADINDACEAE	MYPTACEAE	MYRTACEAE	MALVACEAE	MYRTACEAE	MYRTACEAE		MYRTACEAE	MYRTACEAE	MYRTACEAE	ARECACEAE	ARECACEAE	ARAUCARIACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRIACEAE	HVDTAGEAE	MORACEAE	PLATANACEAE	MYRTACEAE	CASUARINACEAE	CASUARINACEAE	CASUARINACEAE	PLATANACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE		MYRTACEAE	MYRTACEAE	Family
3.0	7.0	12.0	9.0	10.0	15.0	11.0	1.0	4	14 0	9.0	5.0	6.0	٥.U	2.0	17.0	14.0	3.5	15.0	8.0	20.0	16.0	8.0	12.0	6.0	4.0	5.0	6.0	5.0	6.0	2.0	3	л i.c	15.0	9.0	5.0	11.0		11.0	20.0	6.0	8.0	7.0	6.0	20.0	20.0	20.0	<i>/.</i> 0	7	15.0	12.0	14.0	18.0	18.0	18.0	15.0	20.0	10.0	14.0		16.0	16.0	ල් Height (m)
0.07	0.10	0.60	0.10	0.20	0.50	0.20	0.20	0.00	0.50	0.40	0.10	0.10	0.20	0.00	0.80	0.60	0.10	0.80	0.40	0.90	0.80	0.30	0.50	0.30	0.20	0.20	0.20	0.20	0.20	0.10	0.40	0.05	0.90	0.20	0.20	0.40		0.30	1.10	0.15	0.20	0.20	0.15	0.50	0.50	0.50	0.40	6	0.30	0.30	0.60	0.50	0.50	0.60	0.80	1.00	0.60	0.60		0.60	0.70	Diameter at Breast Height (dbh) (m)
0.07	0.10	0.70	0.10	0.20	0.60	C2.0	0.20	0.00	0.60	0.45	0.10	0.15	0.20	0.00	0.80	0.80	0.10	1.00	0.50	1.10	1.10	0.40	0.50	0.30	0.20	0.20	0.20	0.20	0.20	0.0	0.00	0.05	100	0.30	0.20	0.40		0.40	1.20	0.15	0.20	0.20	0.15	0.60	0.60	0.60	0.40	040	0.40	0.40	0.80	0.60	0.60	0.70	0.90	1.20	0.80	0.80		0.70	0.80	0.90
2.00	200	720	2.00	2.40	6.00	3.00	2.40	0.00	200	4 80	2.00	2.00	2.40	02.1	100	720	200	9.60	4.80	10.80	9.60	3.60	6.00	3.60	2.40	2.40	2.40	2.40	2.40	2.00	2.00		10 00	0 A C	340	4.80		360	13 20	2.00	2.40	2.40	2.00	6.00	6.00	6.00	4.80	5	3.60	3.60	7.20	6.00	6.00	7.20	9.60	12.00	7.20	7.20	:	7.20	8.40	Nominal TPZ radius (MS 4970) (AS 4970)
1.08	1 26	285	1.26	1.68	2.67	1.85	1.68	107	291	280	1.26	1.49	1.68	3.01		301	1 26	.3. 31	2.47	3.44	3.44	2.25	2.47	2.00	1.68	1.68	1.68	1.68	1.68	1.20	0.94	0.01	2 24	3 <u>1</u>	1 68	2.25		2 25	3.57	1.49	1.68	1.68	1.49	2.67	2.67	2.67	2.25	2	2.25	2.25	3.01	2.67	2.67	2.85	3.17	3.57	3.01	3.01		2.85	3.01	Nominal SRZ radius (m) (AS 4970) 3 17
Young	Young	Mature	Semi-mature	Semi-mature	Mature	Sem-mature	ampulation		Matura	Mature	Young	Young	Punoy	matula	Matura	Mature	Young	Mature	Mature	Mature	Mature	Mature	Mature	Sem-mature	Semi-mature	Semi-mature	Semi-mature	Semi-mature	Semi-mature	- Tuniy	Voino	Volino	Matura	Mature	Semi-mature	Mature		Mature	Mature	Semi-mature	Mature	Mature	PunoY	Mature	Mature	Mature	Mature	Meduar	Mature	Semi-mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature		Mature	Mature	Age Class
Good	Fair		e Good	e Good	Good				Good	Fair	Good	Good	Good		Evnollont	Excellent	Good	Excellent	Good	Excellent	Excellent	Fair	Good								n a≣	Fair	Excellent	m	e Fair	Fair		Fair	-	e Fair	Good	Good	Fair	Good	Good	Good	Fair	n.	Good	e Fair	Good	Fair	Fair	Good	Good	Excellent	Poor	Good		Poor	Fair	Current Vigou
Average	Average	Average	Average	Average	Good	Average	Whatada		Averane	Poor	Good	Good	Good		Cond .	Average	Good	Average	Average	Good			Good	Average	Suppressed	Suppressed	Suppressed	Suppresse	Suppressed	Afrenan	Avana	Avianana	+	-	Average	Poor		Poor	Average	Average	Good	Good	Average	Average	Average	Average	Poor	Pass	Average	Average	Average	Poor	Poor	Poor	Average	Good	Poor	Average		Poor	Average	Average Current Form
										Lean-Major												Lean-Major			d Excessively Pruned			Suppressed Excessively Pruned	d Excessively Pruned							Very Asymmetric Canopy		Very Asymmetric Canopy									Very Asymmetric Canopy	Van Anomatin Cara	Very Asymmetric Canopy	Very Asymmetric Canopy	Excessively Pruned	Excessively Pruned	Excessively Pruned					Excessively Pruned, Lean Major	Excessively Pruned	Major Tip Dieback,		Noted Defects
Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	Long (>40 years)	Long (> 40 years)	I nm (>40 years)	Long (>40 years)	Replaceable (Small/Young)	Replaceable (Small/Young)	Replaceable (Small/Young)	(seast out) film		Long (>40 years)	Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Long (>40 years)	Lorg (>40 years)	(Buno Lineuro) antecendasi	Replaceable (Small/Young)	DenlenaeNie (Small/Vnimn)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)		Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	I and for diff scores (Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Short (5-15 years)	 Medium (15-40 years) 		Short (5-15 years)	Long (>40 years)	SULE Rating
Low	Low	High	Moderate	Moderate	Moderate	Moderate	moderate	H- J	Moderate	Low	Low	Moderate	Low	ngin	Link	High	Low	High	Moderate	High	High	Low	Moderate	Moderate	Low	Low	Low	Low	Moderate	LOW	LOW	- Ingin	Hinh	Hiah	Low	Low		Low	High	Low	Low	Low	Low	High	High	High	Low		Moderate	Low	Moderate	Low	Low	Low	Moderate	High	Low	Moderate		Low	Moderate	Retention Value
																	Young Tree <12 months																																													General Comments and Notes
		9.	Exotic	Exotic							Native I	Native						Native		Native															Native	Native				Native	Exotic	Exotic	Exotic	Native			Endemic		Native	Exotic		Native		Native	Exotic	Native	Endemic	Native				Tree Origin
Medium	Medium	Medium	Large	Large	Large	Large	Large				Medium	Medium	Medium	Laiya	2		н	Large	m	Large		э		а			Medium	Medium			=	Modium	arna	Medium	Medium	Large	'	Large	Large	Medium	Small	Small	Civic	Large	Large	Large	Medium	Indian	Civic	Large	Large	Medium	Medium	Medium	Large	Civic	Medium	Large		Large	Large	Ultimate Tree Size
Evergreen	Evergreen	Evergreen	Deciduous	Deciduous	Deciduous	Decidional	Decidiona	Desidence	Evernmen	Evergreen	Evergreen	Evergreen	Evergreen	Lvaiðiæi	Evennen	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen	Evergreen	Evergreen	Evelûmen	Everyland	Evergroon	Evernmen	Deciduous	Evergreen	Evergreen		Evergreen	Evergreen	Evergreen	Palm-SingleStem	Palm-SingleStem	Conifer	Evergreen	Evergreen	Evergreen	Evergræn	E. Lawrence	Evergreen	Deciduous	Evergreen	Evergreen	Evergreen	Evergreen	Deciduous	Evergreen	Evergræn	Evergreen	1	Evergreen	Evergræn	Tree Type
Remove	Remove	Remove	Retain	Retain	Retain	Ketain	Netain		Retain	Remove	Remove	Retain	Kemove	Netalli	Datain	Retain	Remove	Retain	Retain	Retain	Retain	Remove	Retain	Retain	Remove	Remove	Remove	Remove	Retain	Nelliove	Removo	Demore	Remove	Retain	Remove	Remove		Remove	Retain	Remove	tem Remove	tem Remove	Remove	Remove	Remove	Remove	Remove		Remove	Remove	Remove	Remove	Remove	Remove	Remove	Retain	Remove	Remove		Remove	Remove	Planning Proposal Recommendation Remove

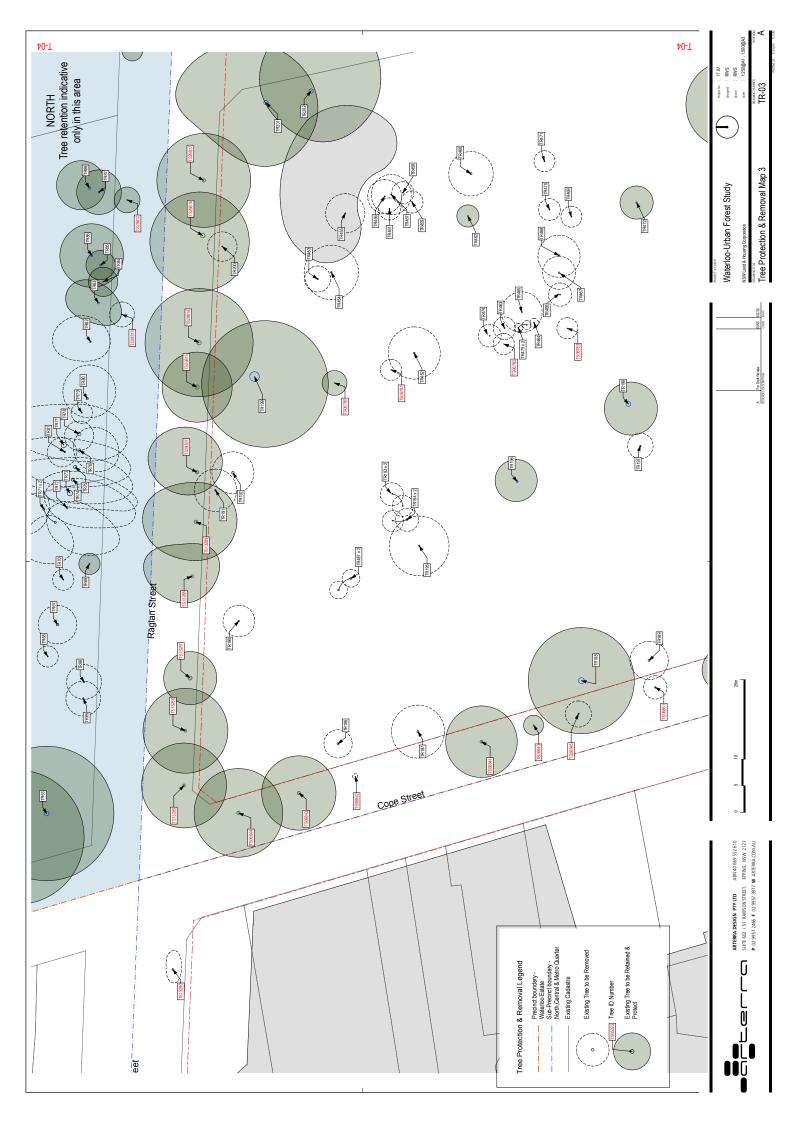
9823	9822	9821	8573	8544	0544	05/2	8543	8541	8540	8539	8538	8537	8536	0000	8535	8534	8533	8532	8531	8530			8529	8528	8527	8526	8525	8524	6700	0.777	8522		8521	8520	8519	8518	1108	0010	0510	8545	8514	8513	8512	8511	8509	8508	8507	8506	6008	8501	8500	8496	8494	8493	8492	0000	6883	6878	6871	0/89	6869	Tree ID
s	s	s	s		n c	n c	0	s	s	s	s	s	s	, u	•	s	S	s	s	s			s	s	s	S	s	S		n u	0		s	s	S	S	s		n u	•	s	s	s	S	, ,	s	s	s			s	S			, ,		s	s	s	c,	s	Precinct
Eucalyptus sideroxylon	Waterhousea flonbunda	Waterhousea floribunda	Laphostemon confertus	Cellus dustraits	Calific australis	Fucal/unities microconvs	Eucalyptus microcorys	Melaleuca quinquenervia	Melaleuca quinquenervia	Malalaraa quinquerer via	Melaleuca ouimuenervia	Umus procera	Celtis australis	Melaleuca quinquenervia	Oupaniopsis anacardioides	Cupaniopsis anacardioides			Cupaniopsis anacardioides	Cupaniopsis anacardioides	Melaleuca quinquenervia	Cupaniopsis anacardioides	Celtis australis	Cupaniopsis anacardioides	O	Faxinus orifitinii	Oupaniopsis anacardioides		Celtis australis	Cupaniopsis anacardioides	Oupaniopsis anacardioides	Cupaniopsis anacardioides	Centrs australis		Calific australis	Cunanionsis anacardioides	Cupaniopsis anacardioides	Cupaniopsis anacardioides	Laphostemon confertus	Cupanopsis anacaroloides	Cupaniopsis anacaroiodes	Cupaniopsis anacardioides	Cupaniopsis anacardioides	Cupaniopsis anacardioides	Cupanopsis anacaronoos	Lapnostemon contentus	Oupaniopsis anacardioides	Cupaniopsis anacardioides	Cupanopsis anacarolootas	Cultainulusis anacaruluutes	Cupanopsis anacaroloudes		Eucalyptus sideroxylon	Eucalyptus sideroxylon	Eucalyptus punctata	Eucalyptus sideroxyton	Eucalyptus sideroxylon	Iree Species				
Mugga Ironbark	Weeping Lilly Pilly	Weeping Lilly Pilly	Brush Box	ouurem nackuerty	Southern Hackherry	Tallowood	Tallowood	Tallowood	Tallowood	Tallowood	Tallowood	Broad Leafed Paperbark	Broad Leated Paperbark	Droad Loafed Department.	Broad Leafed Paperbark	English Elm	Southern Hackberry	Broad Leafed Paperbark	Tuckeroo	Tuckeroo			Tuckeroo	Tuckeroo	Broad Leafed Paperbark	Tuckeroo	Southern Hackberry	Iuckeroo	C IIIIII C IIII	Griffith's Ash	Tuckeroo		Southern Hackberry	Tuckeroo	Tuckeroo	Tuckeroo			Southern Hackherry	Tuckeroo	Tuckeroo	Tuckeroo	Brush Box	luckeroo	Tuckeroo	Tuckeroo	Tuckeroo	luckeroo	IUCKETOO	Brush Box	Tuckeroo	luckeroo	IUCKEROO	IUCKEIOO	Tuckeroo		Mugga Ironbark	Mugga Ironbark	Grey Gum	mugga ironoark	Mugga Ironbark	ne
MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE			MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE		MYRTACEAE	ULMACAEAE	ULMACAEAE	MYRTACEAE	SAPINDACEAE	SAPINDACEAE			SAPINDACEAE	SAPINDACEAE	MYRTACEAE	SAPINDACEAE	ULMACAEAE	SAPINUACEAE		OLEACEAE	SAPINDACEAE		ULMACAEAE	SAPINDACEAE	SAPINDACEAE	SAPINDACEAE	ULIMACAEAE			SAPINDACEAE	SAPINDACEAE	SAPINDACEAE	MYRTACEAE	SAPINUACEAE	SAPINDACEAE	SAPINDACEAE	SAPINDACEAE	SAPINDACEAE	SAPINDACEAE	MTRIALEAE	SAPINDACEAE	SAPINDACEAE	SAPINDACEAE	GARINDAGEAE	SAPINDACEAE		MYRTACEAE	MYRTACEAE	MYRTACEAE	MTRIALEAE	MYRTACEAE	Family
10.0	3.0	3.0	4.0	1.0	11 0	20 0	20.0	20.0	20.0	20.0	20.0	12.0	12.0	100	12.0	12.0	14.0	10.0	6.0	6.0			5.0	5.0	12.0	6.0	10.0	6.0	2	4.0	6.0		13.0	4.0	5.0	6.0	10.0		12 0	5.0	4.0	4.0	3.0	/.0	5.0	5.0	5.0	5.0	0.0	5.0	6.0	5.0	0.0	0.0	5.0	3	8.0	8.0	12.0	11.0	10.0	Height (m)
0.25	0.05	0.05	0.05	0.00	0.60	0.90	0.70	0.80	0.80	0.80	0.90	0.90	0.60	0.00	0.60	0.70	0.70	0.60	0.30	0.30			0.20	0.20	0.70	0.20	0.80	0.20	0.00	0.30	0.20		0.60	0.10	0.10	0.15	0.50	-	0.50	0.15	0.10	0.20	0.05	0.25	0.15	0.20	0.20	0.20	0.20	0.10	0.20	0.20	0.20	0.20	0.20	8	0.15	0.20	0.35	0.20	0.20	n) n)
0.25	0.05	0.05	0.05	0.00	08.0	1 20	0.80	0.90	1.00	1.00	1.10	1.10	0.65	0.10	0.70	0.80	0.70	0.70	0.35	0.30			0.25	0.25	0.80	0.20	0.80	0.30	0.00	05.0	0.30		0.70	0.15	0.15	0.20	0.00	~~~	07.0	0.20	0.15	0.25	0.05	0.0	02.0	0.20	0.20	02:0	0.20	0.10	0.20	0.20	c7.0	0.20	0.20	2	0.15	0.20	0.40	02.0	0.20	Dia
3.00	2.00	2.00	2.00	0.20	7 00	10 80	8 40	960	9.60	9.60	10.80	10.80	7.20	1.20	7 20	840	8.40	7.20	3.60	3.60			2.40	2.40	8.40	2.40	9.60	2.40	0.00	2 2.40	240		7.20	2.00	2.00	2.00	b.UU	0.00	O	3	2.00	2.40	2.00	3.00	2.00	2.40	2.40	2.40	2.40	2.00	2.40	2.40	2.40	2.40	2.40	E.00	ñ	2.40	4.20	2.40	2.40	(m) 12xdbh (AS 4970)
1.85	0.94	0.94	0.94	3.01	2 	3 57	202	317	3.31	3.31	3.44	3.44	2.76	C07	282	301	2.85	2.85	2.13	2.00		į	.85	1.85	3.01	1.68	3.01	2.00	200	200	300		2.85	1.49	1.49	1.68	2.67	2	0 I.00	1 68	1.49	1.85	0.94	200	1.68	1.68	1.68	1.68	1.68	1.26	1.68	1.68	1.85	1.00	1.68	į	1 49	1.68	2.25	1.68	1.68	(m) (AS 4970)
Semi-mature	Young	Young	Young	Malma	Matura	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	maturo	Mature	Mature	Mature	Mature	Mature	Mature			Mature	Mature	Mature	Semi-mature	Mature	Mature	Colle India	Semi-mature	Mature		Mature	Semi-mature	Semi-mature	Semi-mature	wature		Matura	Semi-mature	Semi-mature	Mature	Young	Mature	Mature	Mature	Semi-mature	Mature	Toung	roung	Mature	Mature	Mature	Comminatore	Sem-mature		Semi-mature	Semi-mature	Mature	Sem-mature	Semi-mature	Age Class
e Fair	Good	Good	Fair	Guu	Good	Excellent	Good	Good	Good	Good	Excellent	Fair	Fair	1	Fair	Fair	Good	Good	Good	Good			Good	Good	Good	e Fair	Good	Good	1		Good		Fair	e Fair	e Good	e Good	Fall		_		Good	Good	Fair	Excellent	Fair	Good			Fall	Good	Good	Fair	Fall				Good	e Fair	Fair			Current Vigou
Poor	Average	Average	Average	GOOD	Good	Average	Average	Average	Average	Average	Average	Poor	Average		Poor	Average	Average	Poor	Average	Average			Average	Average	Good	Average	Average	Good	, it or ugo	Average	Average		Suppressed	Good	Good	Good	rwi		Good	Average	Good	Poor	Average	Good	Suppressed	Average	Suppressed	Suppressed	ADEIAAN	Average	Good	L 2	Suppressed	Avelage	Average		Poor	Poor	Average	Average	Average	Current Form
Excessively Pruned								Major Inclusions				Excessively Pruned		Environitivity I Turinou	Excessively Pruned	Significant Decay		Excessively Pruned			Penna	Canopy, Excessively	Very Asymmetric									Canopy, Excessively Pruned	Very Asymmetric				very Asymmetric Canopy, Major Tip Dieback					Very Asymmetric Canopy			Excessively Pruned		Excessively Pruned		1			1 Excessively Pruned, Very, Asymmetric Canopy	Excessively Pruned	_	Maine		Very Asymmetric Canopy	Very Asymmetric Canopy				Noted Defects
Long (>40 years)	Replaceable (Small/Young)	Replaceable (Small/Young)	Replaceable (Small/Young)	Luig (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (~ 40	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)			Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	mount (10 to juno)	Medium (15-40 veers)	Long (>40 years)		Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	medium (13-40 years)		Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Replaceable (Small/Young)		Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Mada (45 40 maily roung)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Modiuli (10-40 years)	Long (>40 years)		Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	SULE Rating
Low	Low			mouerate	Moderate	High	Hiah	Moderate	High	High	High	Low	Low	101	Low	Moderate	Moderate	Low	Moderate	Moderate			Moderate	Moderate	High	Moderate	Moderate	Moderate		Low	Moderate		Moderate	Moderate	Moderate	Moderate	LOW		Moderate	Moderate	Low	Low	Low	High	Low	Low	Low	Low	LOW	Low	Moderate	Low	Low	LOW	Low		Low	Low	Moderate	moderate	Moderate	Retention Value
																									Valley pruned																			Great Liee						ruorus sunon zi > ee il gruo r												General Comments and Notes
Native M		Native M							Native L			Endemic N	Endemic M	2	5.	Exotic N	Exotic N	Endemic N	Native S						Ю.	Native S	Exotic N				Native S		Exotic N		Native S	Native S	EXULC				Native S	Native															Native N	Native N	Endemic N			<u> </u>
Medium	Medium	Medium					Larce					Medium				Medium	Medium	Medium	Small						n	Small	Medium				Small		Medium		Small	Small	medulutti		3		Small	Small	Medium							Э						:	Medium	Medium	Medium			Ultimate Tree Size
Evergreen	Evergreen	Evergreen	Evergreen	Deciumns	Decidiniis	Evernmen	Everareen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Linkin	Everareen	Deciduous	Deciduous	Evergreen	Evergreen	Evergreen			Evergræn	Evergreen	Evergreen	Evergræn	Deciduous	Evergræn	Lingua	Everareen	Evergreen		Deciduous	Evergræn	Evergreen	Evergræn	Deckubus		Decidinals	Everareen	Evergræn	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen	Evergreen	Evergreen	Evergræn	Evergreen	Lvaiñiaai	Evergreen	1	Evergreen	Evergræn	Evergreen	- Evelblev	Evergreen	Tree Type
Remove	Remove	Remove	Remove	Netain	Retain	Retain	Retain	Retain	Retain	Retain	Remove	Remove	Remove		Remove	Retain	Retain	Remove	Retain	Retain			Retain	Retain	Retain	Retain	Retain	Ketain	- Control of Control o	Remove	Retain		Retain	Retain	Retain	Retain	Kelliove		Remove	Retain	Remove	Remove	Remove	Ketain	Remove	Remove	Remove	Remove	Remove	Remove	Retain	Kemove	Remove	Nelliuve	Remove	1	Remove	Remove	Remove	Retain	Retain	Planning Proposal Recommendation

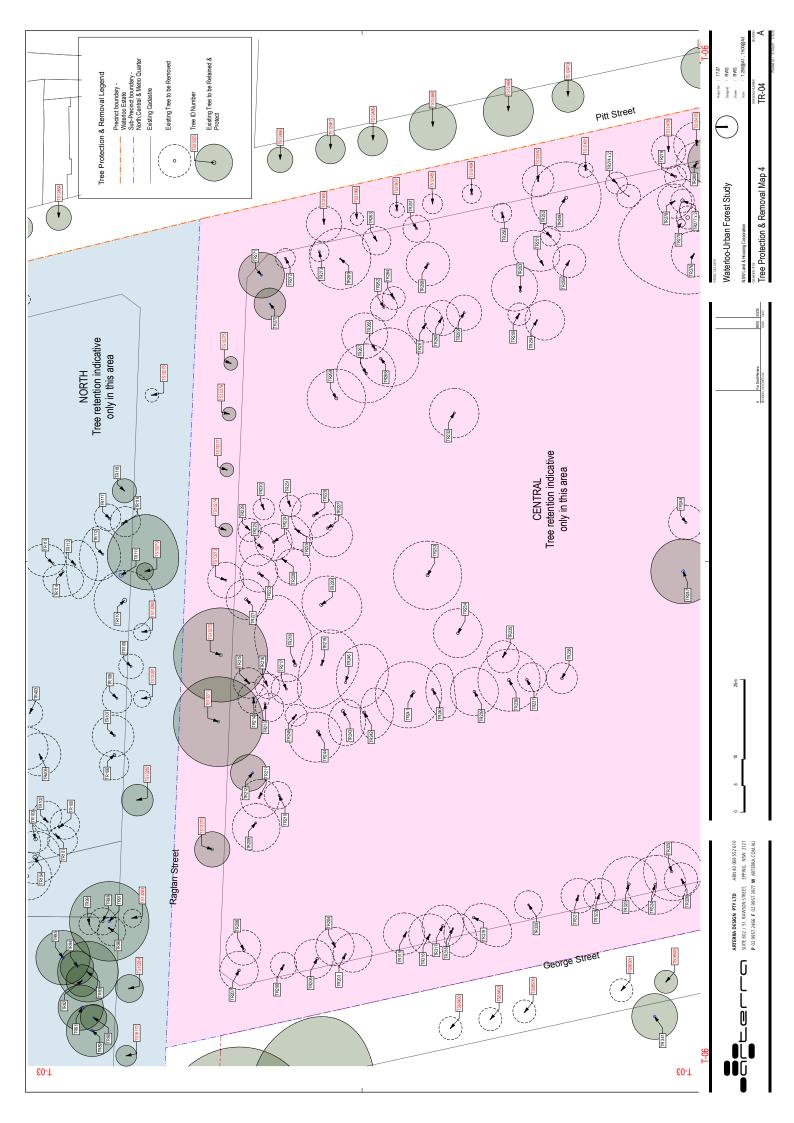
15087 15090	08001	12002	15085	15082	15081	15078	15075	15074	13289	13288	10201	10000	12206	13285	12503	12502	12501	12500	12499	12498	12497	12496	12495	12494	12493	12492	12491		10659	10658		10657	10656	10000	10655	10647	10646	10639	10638	10637	10636	10635	9837	3000	CCOR	9004	9833	0001	9832	1280	9830	9829	9828	0206	2000	9824	Tree ID
s		n u		s	s	s	s	s	u				•	s	s	s	s	s	s	Ś	s	s	s	5	s	S	s		s	S		s	s		s	s	<i>.</i> .	s	s	s	s	s	s	ć	n u	n u	, s		<i></i> 0	0	s	s	s o	n u	n 0	• •	Precinct
Melaleuca quinquenervia Melaleuca quinquenervia	Melalauca quiviqueriaria	Melaleuca ouimuanenvia	Melaleuca quinquenervia	Waterhousea Ilonbunda	Tristaniopsis laurina	Eucalyptus botryoides	Tristaniopsis laurina	Tistaniopsis laurina	Eucaryptus microcorys	Eucarypius merocorys	Eucosyptas menocorys	Finalizatio microconze	Fucalinitus micmoorivs	Eucalyptus microcorys	Robinia pseudoacacia 'Frisia'	Robinia pseudoacacia 'Frisia'	Robinia pseudoacacia 'Frisia'	Hobinia pseudoacacia 'Frisia'	Robinia pseudbacacia 'Frisia'	Modulhia pseudoacacia :r-risia:	Eucalyptus borryoides	Eucalyptus microcorys	Hobinia pseudoacacia 'Frisia'	Robinia pseucoacacia 'Frisia'	Eucalyptus borryoides	Robina pseucoacacia :r/isia:	Robinia pseudoacacia 'Frisia'		Liquidambar styraciflua	Lquidambar styraciflua		Liquidambar styraciflua	Liquidambar styraciflua		Liquidambar styraciflua	Eucalyptus microcorys	Eucalyptus microcorys	Liquidambar styraciflua	Liquidambar styraciflua	Liquidambar styraciflua	Liquidambar styraciflua	Laphostemon confertus	Eucalyptus sideroxylon		Euralyntus bornvidas	Eurolyntus hotnynidas	Funaluntus hotnunidas		Eucalyptus sideroxylon	Waterhousea Ilonihunda	Eucalyptus sideroxylon	Eucalyptus sideroxylon	Waterhousea Itonibunda	Eucalyntus bdryoides	Euralyntus hofnynidas	Eucalyptus sideroxylon	Tree Species
Broad Leafed Paperbark Broad Leafed Paperbark	Broad Lealed Faperbalk	Broad Leafed Paperbark	Broad Leafed Paperbark	Weeping Lilly Pilly	Water Gum	Bangalay	Water Gum	Water Gum	Iallowood	Tallowood	Telleneral	Tallowood	Tallowood	Tallowood	Black Locust	Bangalay	Tallowood	Black Locust	Black Locust	Bangalay	Black Locust	Black Locust		Liquidambar	Liquidambar		Liquidambar	Liquidambar		Liquidambar	Tallowood	Tallowood	Liquidambar	Liquidambar	Liquidambar	8		Mugga Ironbark		Bangalay	Bangalay	Rangalay		Mugga Ironbark	Weeping Lilly Pilly	Mugga Ironbark	Mugga Ironbark	Weeping Lilly Pilly	Bangalay		Mugga Ironbark Mugga Ironbark	ne					
MYRTACEAE	MUNITACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MIRIACEAE	MTRIACEAE		MYPTACEAE	MYRTACEAE	MYRTACEAE	FABACEAE	FABACEAE	FABACEAE	FABACEAE	FABACEAE	FABACEAE	MYRTACEAE	MYRTACEAE	FABACEAE	FABACEAE	MYRTACEAE	FABAUEAE	FABACEAE		HAMAMELIDACEAE	HAMAMELIDACEAE		HAMAMELIDACEAE	HAMAMELIDACEAE		HAMAMELIDACEAE	MYRTACEAE	MYRTACEAE	HAMAMELIDACEAE	HAMAMELIDACEAE	HAMAMELIDACEAE	HAMAMELIDACEAE	MYRTACEAE	MYRTACEAE		MYRTACEAE	MYRTACEAE	MYRIACEAE		MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	Family
12.0 16.0	12.0	12.0	12.0	3.0	3.0	18.0	5.0	6.0	20.0	21.0	20.0	30 1	17.0	16.0	6.0	6.0	6.0	6.0	5.0	0.0	14.0	22.0	7.0	0.0	24.0	3.0	4.0		5.0	9.0		10.0	11.0		12.0	15.0	15.0	14.0	12.0	6.0	12.0	15.0	5.0		10.0	18.0	3.0	2	8.0	3.0	10.0	5.0	3.0	15.0	12.0	10.0	Height (m)
1.00 0.90	1.20	1.20	0.90	0.10	0.10	0.80	0.20	0.20	0.70	0.00	0.00	0.80	0 70	0.80	0.20	0.20	0.20	0.25	0.10	0.20	0.40	0.70	0.20	0.15	0.80	0.05	0.05		0.10	0.30		0.30	0.30		0.30	0.75	0.70	0.60	0.50	0.30	0.40	0.80	0.20	_	0.50	0.00	0.05	2	0.20	0.05	0.25	0.20	0.05	0.25	0.25	0.20	n) ght
1.20	1.20	1.20	0.90	0.10	0.15	0.90	0.20	0.20	0.00	0.70	0.00	0 00	090	1.00	0.25	0.25	0.25	0.30	0.15	0.20	0.60	0.90	0.20	0.20	0.90	0.05	0.05		0.15	0.40	5	0.40	0.40		0.40	0.90	0.80	0.70	0.70	0.35	0.50	0.80	0.20		0.50	0.80	0.05		0.20	0.05	0.25	0.20	0.05	0.25	0.25	0.20	Dia
12.00 10.80	14.40	14 40	10.80	2.00	2.00	06.6	2.40	2.40	8.40	1:20	9.00	0.40	8 10	960	2.40	2.40	2.40	3.00	2.00	2.40	4.80	8.40	2.40	2.00	9.60	2.00	2.00		2.00	3.60		3.60	3.60	0.00	3.60	9.00	8 40	720	6.00	3.60	4.80	9.60	2.40	0.00	6. 1.20	7.70	2.00	1	2.00	300	3.00	2.40	2.00	3 00	3 0.00	2.40	\$ Î I -
3.57 3.31	3.5/	3 57	3 17	1.26	1.49	3.17	1.68	1.68	3.07	282	0.17	ې د 14	2 4 7	یں بر	1.85	1.85	1.85	2.00	1.49	1.68	2.67	3.17	1.68	1.68	3.17	0.94	0.94		1.49	2.25		2.25	2.25	1	2.25	3.17	301	2.85	2.85	2.13	2.47	3.01	1.68	l.	0.UI	201	0.94		1 0	001	1.85	1.68	0.94	1 85	1.00	1.68	No SRZ (m) 4
Mature Mature	Mature	Mature	Mature	Young	Young	Mature	Semi-mature	Sem-mature	Mature	Mature	maturo	Matura	Mature	Mature	Mature	Mature	Mature	Sem-mature	Young	Sem-mature	Mature	Mature	Sem-mature	Sem-mature	Mature	Young	Young		Semi-mature	Sem-mature		Semi-mature	Semi-mature		Semi-mature	Mature	Mature	Mature	Mature	Mature	Mature	Mature	Semi-mature		Maturo	Maturo	Young	5	Semi-mature	Young	Semi-mature	Semi-mature	Young	Semi-mature	Semi-mature	Semi-mature	
Good Fair		Fair	Fair	Good	Good	Good	Good	Fair	6000	6000		Evrollont	Excellent	Good	Poor	Fair	Fair					Excellent	Fair	Fair	Good	Fair	Fair		Good	Good		Good	Good		Good	Good	Good	Good	Fair	Fair	Good	-	Fair	Ì	Fair	Fair	Good		Fair	Good	Good	Poor		Fair		Poor	Current Vigour
Average Average	Average	Average	Poor	Average	Average	Average	Average	Average	Analaga	Average	0000		Good	Average	Poor	Poor	Poor	Average	Poor	Average	Poor	Good	Poor	Average	Average	Average	Poor		Poor	Poor		Average	Average		Average	Good	Good	Average	Suppressed	Suppressed	Suppressed	Good	Suppressed		Poor	Averane	Good		Poor	Average	Average	Poor	Average	Average	Δverane	Poor	Current Form
															Excessively Pruned	Excessively Pruned	Excessively Pruned			Excessively Pruned	Lean-Major		Lean-Major						Excessively Pruned	Very Asymmetric Canopy					Very Asymmetric Canopy				l Very Asymmetric Canopy, Excessively Pruned	Excessively Pruned	Excessively Pruned, Very		Excessively Pruned	Asymmetric Canopy	Excessively Finned Very	Expessively Primed			Very Asymmetric Canopy		Very Asymmetric Canopy	Excessively Pruned				Excessively Pruned	Noted Defects
Lorg (>40 years) Lorg (>40 years)	Long (>40 years)	Long (>40 years)		Replaceable (Small/Young)	Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Lorg (>40 years)	Long (* 40 yours)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Replaceable (Small/Young)	Replaceable (Small/Young)		Long (>40 years)	Long (>40 years)		Long (>40 years)	Long (>40 years)		Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)			Long (>40 years)	Long (>40 years)		Long (>40 years)	Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Long (>40 years)	SULE Rating
Moderate Low	ale none	Moderate	Low	Low	Low	High	Moderate	Low	ngin	ngin	li en	Hinh	Hiah	High	Low	Low	Low	Moderate	Low	Low	Moderate	High	Low	Low	High	Low	Low		Low	Moderate		Moderate	Moderate		Moderate	High	High	Moderate	Low	Low	Low	High	Low		Increase and	Moderate	Low		Low	Low	Moderate	Low	Low	Moderate	Moderate	Low	Retention Value
				Young Tree <12 months																								clearance.	Very close to kerb line. Pruned for wire	Very close to kerb line. Pruned for wire clearance.	clearance.	Very close to kerb line. Pruned for wire	Very close to kerb line. Pruned for wire clearance.	clearance.	Very close to kerb line. Pruned for wire										more verify premier	Tree valler mined								Valley puned.	Valley mined		General Comments and Notes
Endemic Medium Endemic Medium			<u>8</u> .	Native Medium	Native Small	Endemic Large	Native Small		Native Laige						Exotic Medium	Exotic Medium	Exotic Medium				0		Exotic Medium		0				Exotic Large	Exotic Large		Exotic Large	Exotic Large					Exotic Large	Exotic Large	Exotic Large		Native Medium			Endemic Large	Endemic Large				Native Medium	Native Medium			Endemic Large		Native Medium	Tree Origin
Evergræn		Everareen	Evergreen	Evergræn	Evergreen	Evergreen	Evergreen	Evergreen	- Evelûleen	Evergreen	Link	Eviarritaan	Everareen	Evergreen	Deciduous	Deciduous	Deciduous	Deciduous	Deciduous	Decidious	Evergreen	Evergreen	Deciduous	Deciduous	Evergreen	Decidious	Deciduous		Deciduous	Deciduous		Deciduous	Deciduous		Deciduous	Evergreen	Evergreen	Deciduous	Deciduous	Deciduous	Deciduous	Evergreen	Evergreen	q	Evergreen	Evernmen	Evergreen	1	Evergreen	Everareen	Evergreen	Evergreen	Evergreen	Evergreen	Evernmen	Evergreen	Tree
Retain Remove	Relliove	Remove	Remove	Remove	Remove	Retain	Retain	Remove	Retain	Ketain	Trought	Potain	Retain	Retain	Remove	Remove	Remove	Retain	Remove	Kemove	Remove	Remove	Remove	Remove	Remove	Remove	Remove		Remove	Ketain		Retain	Retain		Retain	Remove	Remove	Retain	Remove	Remove	Remove	Retain	Remove		Remove	Remove	Remove	1	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Remove	Type Planning Proposal Recommendation

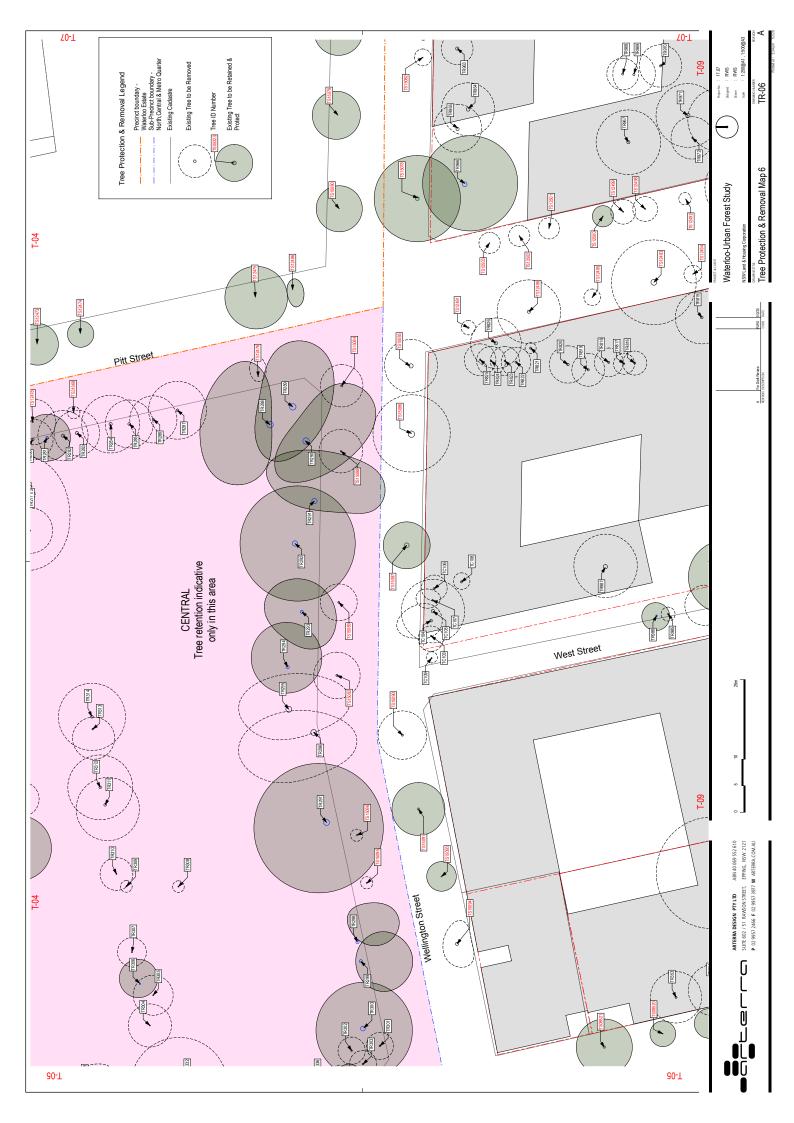

00026	20020	22882	32881	32880	32879	32878	32874	32873	32872	32871	32870	32869	32868	32866	32865	32864	32863	32861	32859	32857	32844	32843	32842	32615	32613	31543	29837	29822	29821	29820	20010	20818	29010	20040	29815	29814	16532	16531	16530	16529	16528	15100	15099	15098	15097	15094	15093	15091	Tree ID
ú		'n	s	s	s	s	s	s	s	s	s	s	Ś	s	s	s	s	s	s	s	s	s	s	s	s	s o	s	s	s	s o	<i>n</i> 0	<i>.</i> .	in u	•	s	s o	0	s	s o	s	s	s	s	s	s	s	s	s	Precinct
	Eucoluntue ordemyulan	Corvmbia maculata	Eucalyptus botryoides	Eucalyptus microcorys	Eucalyptus grandis	Callistemon viminalis cv.	Eucalyptus grandis	Eucalyptus microcorys	Eucalyptus microcorys	Eucalyptus botryoides	Callistemon viminalis cv.	Corymbia maculata	Eucalyptus saigna	Eucalyptus saligna	Eucalyptus microcorys	Callistemon viminalis cv.	Corymbia maculata	Callistemon viminalis cv.	Eucalyptus microcorys	Eucalyptus sideroxylon	Callistemon viminalis cv.	Corymbia maculata	Eucalyptus microcorys	Corymbia eximia	Waterhousea Ilonbunda	Cupaniopsis anacardioides	Eucalyptus microcorys	Tristaniopsis laurina	Tristaniopsis laurina	Eucalyptus microcorys	Melaleuca ouinouenervia	Melaleuca ouinouenervia	Eucalyptus microcorys	Finalinti e micmonie	Laphostemon confertus	Eucalyptus microcorys	Oupaniopsis anacardioides	Cupaniopsis anacardioides	Eucalyptus punctata	Ficus microcapa var. hilli	Eucalyptus microcorys	Tristaniopsis laurina	Melaleuca quinquenervia	Tristaniopsis laurina	Eucalyptus microcorys	Melaleuca quinquenervia	Tristaniopsis laurina	Melaleuca quinquenervia	Tree Species
	Munna Ironhark	Spotted Gum	Bangalay	Tallowood	Flooded Gum	Weeping Bottlebrush	Flooded Gum	Tallowood	Tallowood	Bangalay	Weeping Bottlebrush	Spotted Gum	Sydney Blue Gum	Sydney Blue Gum	Tallowood	Weeping Bottlebrush	Spotted Gum	Weeping Bottlebrush	Tallowood	Mugga Ironbark	Weeping Bottlebrush	Spotted Gum	Tallowood	Yellow Bloodwood	Weeping Lilly Pilly	Tuckeroo	Tallowood	Water Gum	Water Gum	Tallowood .	Broad Leafed Paperbark	Broad Leafed Paperbark	Tallowood	Tallowood	Brush Box	Tallowood	Tuckeroo	Tuckeroo	Grey Gum	Hills Weeping Fig	Tallowood	Water Gum	Broad Leafed Paperbark	Water Gum	Tallowood	Broad Leafed Paperbark	Water Gum	Broad Leafed Paperbark	Common Name
	MYDTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MTRIACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	SAPINDACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYPTACEAE	MYRTACEAE	MYRTACEAE	SAPINDACEAE	SAPINDACEAE	MYRTACEAE	MORACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	MYRTACEAE	Family
ŝ	80	10.0	12.0	12.0	14.0	5.0	14.0	14.0	14.0	13.0	3.0	10.0	0.01	16.0	14.0	3.0	7.0	2.0	14.0	7.0	5.0	14.0	14.0	2.5	3.0	5.0	20.0	4.0	5.0	17.0	19.0	18.0	20.0	3	19.0	20.0	5.0	4.0	20.0	18.0	16.0	4.0	12.0	3.0	19.0	12.0	4.0	12.0	Height (m)
ġ	0 15	0.20	0.40	0.40	0.60	0.10	0.30	0.80	0.60	0.40	0.10	0.20	0.30	0.90	0.70	0.10	0.10	0.05	0.30	0.20	0.10	0.30	0.80	0.07	0.10	0.25	0.80	0.15	0.20	0.70	1.20	1.40	0.80	0.20	0.50	0.70	0.20	0.15	0.60	0.80	0.80	0.15	1.10	0.10	1.00	0.90	0.20	0.70	n) gar
ŝ	0 15	0.20	0.40	0.40	0.70	0.15	0.35	0.90	0.70	0.50	0.10	0.20	0.00	0.90	0.80	0.10	0.10	0.05	0.40	0.20	0.10	0.35	1.00	0.07	0.10	0.30	1.00	0.20	0.20	0.90	1.30	1.50	1.00	08.0	0.70	0.80	0.25	0.15	0.70	1.00	0.90	0.15	1.20	0.10	1.10	1.00	0.25	0.80	Trunk Diameter at base (dg) (m)
2.00	2.10	240	4.80	4.80	7.20	2.00	3.60	9.60	7.20	4.80	2.00	2.40	4.20	10.80	8.40	2.00	2.00	2.00	3.60	2.40	2.00	3.60	9.60	2.00	2.00	3.00	960	2.00	2.40	8.40	14 40	15.00	9 60 60		6.00	8.40	240	2.00	7.20	960	9.60	2.00	13.20	2.00	12.00	10.80	2.40	8.40	Nominal TPZ radius (m) 12xdbh (AS 4970)
1.43	1 . 0	168	2.25	2.25	2.85	1.49	213	3.17	2.85	2.47	1.26	1.68	2.67	3.17	3.01	1.26	1.26	0.94	2.25	1.68	1.26	213	3.31	1.08	1.26	2.00	د: د:	1.68	1.68	3.17	3 60	20 20	33 9 34	2	2.85	3.01	1.85	1.49	2.85	331	3.17	1.49	3.57	1.26	3.44	3.31	1.85	3.01	Nominal SRZ radius (m) (AS 4970)
00111100	Comi-moturo	Semi-mature	Mature	Mature	Mature	Mature	Semi-mature	Mature	Mature	Mature	Semi-mature	Semi-mature	Mature	Mature	Mature	Semi-mature	Semi-mature	Semi-mature	Mature	Semi-mature	Semi-mature	Semi-mature	Mature	Young	Young	Semi-mature	Mature	Semi-mature	Semi-mature	Mature	Mature	Mature	Mature	Matura	Mature	Mature	Semi-mature	Semi-mature	Mature	Mature	Mature	Young	Mature	Young	Mature	Mature	Semi-mature	Mature	Age Class
		re Good	Fair	Good	Fair	Good	re Fair	Good	Good	Fair				Good	Good	re Fair	re Fair	re Poor	Fair	re Fair	re Fair		Good	Good	Good		-	re Fair		Good	Good	Good	Excellent	Good	Good	-			Fair	Excellent	Good	Good	Good	Good	Excellent	Fair	re Good	Good	Current Vigou
- g	Door	Average	Average	Suppressed	Average	Good	Average	Average	Poor	Poor	Average	Suppressed	6000	Average	Average	Average	Suppressed	Average	Average	Poor	Average	Average	Average	Average	Average	Good	Average	Average	Average	Average	Average	-	Average	Δ.vorano	Suppressed	Average	Average	Poor	-	-	Average	Good	Good	Good	Good	Poor	Good	Average	Current Form
early requiring the second		-	-	8	-						-	8					bd		-			-			-		-	-	-	-				-	ed Very Asymmetric Canopy		_	Lean-Major								Very Asymmetric Canopy			Noted Defects
formed on A Burn		Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Lorg (>40 years)	Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Replaceable (Small/Young)	Long (>40 years)	Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Replaceable (Small/Young)	Replaceable (Small/Young)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	I om />40 week)	_	Long (>40 years)	Medium (15-40 years)	Short (5-15 years)	Long (>40 years)	Long (>40 years)	Long (>40 years)	Replaceable (Small/Young)	Lorg (>40 years)	Replaceable (Small/Young)	Long (>40 years)	Medium (15-40 years)	Long (>40 years)	Long (>40 years)	SULE Kating
monorme	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate	High	Moderate	Moderate	Low	Moderate	High	High	High		Low	Low	Moderate	Low	Low	Moderate	High	Low	Low	Moderate	High	Low	Low	High	Moderate	Moderate	High	Hinh	Moderate	High	Low	Low	Moderate	High	High	Low	Moderate	Low	High	Low	Moderate	Moderate	Retention Value
						Small specimen to the east not numbered or recorded.																			Young Tree <12 months														Tree growing close to fig		Tree codominant stems								General Comments and Notes
	Natino	Native	Endemic	Native	Native	or Native	Native	Native	Native	Endemic	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Native	Endemic	Endemic	Native	Nativo	Native	Native	Native	Native	Endemic	Native	Native	Native	Endemic	Native	Native	Endemic	Native	Endemic	Tree Origin
	Modium	Large	Large	Large	Civic	Small	Civic	Large	Large	Large	Small	Large	CIVIC	Civic	Large	Small	Large	Small	Large	Medium	Small	Large	Large	Medium	Medium	Small	Large	Small	Small	Large	Medium	Medium	Large	arno	Medium	Large	Small	Small	Medium	Civic	Large	Small	Medium	Small	Large	Medium	Small	Medium	Ultimate Tree Size
L L C G C C	Eviormion	Evergreen	Evergræn	Evergreen	Evergræn	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Everareen	Everareen	Evergreen	Evernmen	Evergreen	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergreen	Evergræn	Evergreen	Evergreen	
																																																	Tree Type PI R
	Datain	Remove	Retain	Retain	Retain	Retain	Retain	Remove	Retain	Retain	Remove	Retain	Ketain	Retain	Retain	Remove	Remove	Remove	Retain	Remove	Remove	Retain	Remove	Remove	Remove	Retain	Retain	Remove	Remove	Retain	Retain	Retain	Retain	5	Retain	Retain	Remove	Remove	Retain	Retain	Remove	Remove	Retain	Remove	Retain	Remove	Retain	Retain	Planning Proposal Recommendation


6.2 Schedule of Proposed Tree Species

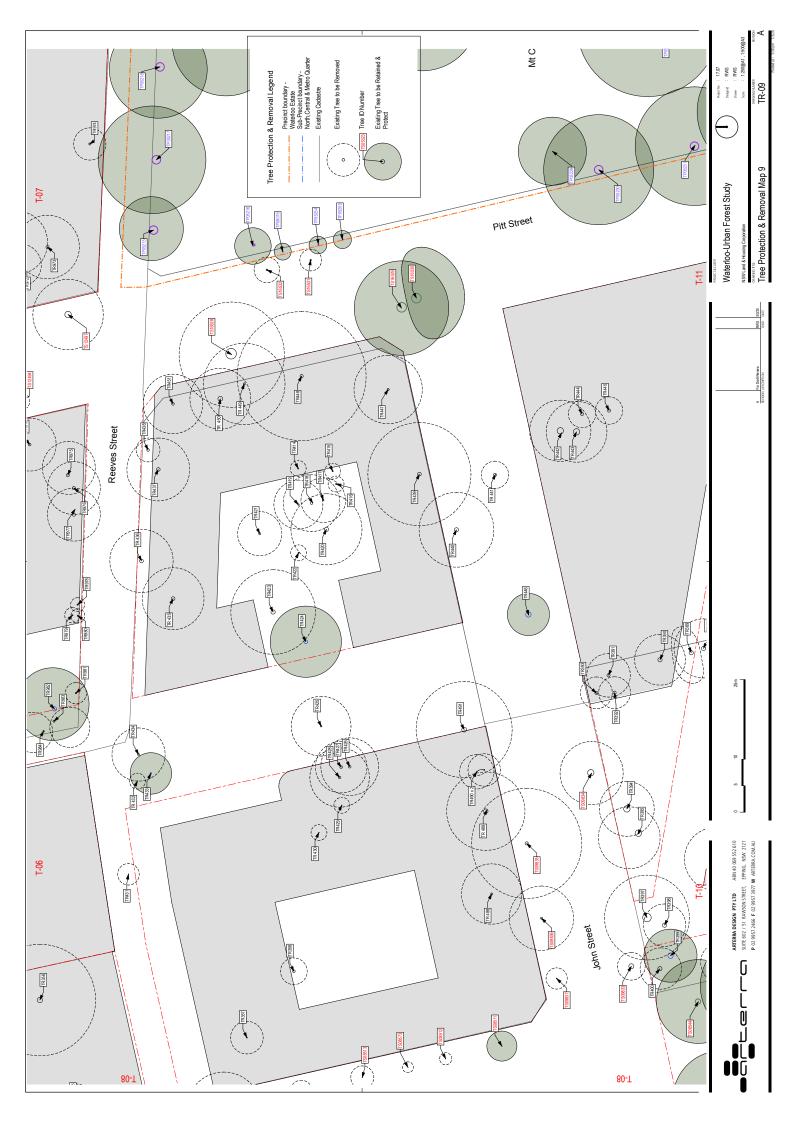

Family	Genus	Species	Common Name	Potential Height Reached in	Ultimate	Typical Ultimate Canopy Extent	Native/ Exotic	Evergreen/	Typical Waterloo Estate Street or Usage
unny	Condo	opeoles	Common Hume	Street	Size Class	(Canopy Cover)	TRAFFIC EXCLUSION	Deciduous	Typical Waterios Estato Circle of Cougo
ODOCARPACEAE	Afrocarpus	falcatus	Outeniqua Yellow Wood	20-25m	Civic	314m2	Exotic	Evergreen	
RAUCARIACEAE	Agathis	robusta	Queensland Kauri	20-25m	Civic	78m2	Native	Evergreen	
RAUCARIACEAE	Araucaria	columnaris	Cook Pine	20-28m	Civic	78m2	Exotic	Evergreen	
RAUCARIACEAE	Araucaria	cunninghamii	Hoop Pine Norfolk Island Pine	20-28m 20-28m	Civic Civic	78m2 175m2	Native Exotic	Evergreen	
IYRTACEAE	Araucaria Corymbia	heterophylla citriodora	Lemon-Scented Gum	18-25m	Civic	314m2	Native	Evergreen Evergreen	
IVRTACEAE	Eucalyptus	pilularis	Blackbutt	20-25m	Civic	314m2	Endemic	Evergreen	
IYRTACEAE	Eucalyptus	saligna	Sydney Bluegum	20-28m	Civic	314m2	Native	Evergreen	
IORACEAE	Ficus	macrophylla	Morton Bay Fig	20-25m	Civic	314m2	Native	Evergreen	
IORACEAE	Ficus	microcarpa var. hillii	Hills Weeping Fig	20-25m	Civic	314m2	Native	Evergreen	
IYRTACEAE	Angophora	costata	Smooth-barked Apple	12-20m	Large	175m2	Endemic	Evergreen	
IYRTACEAE	Anqophora	floribunda	Rough-barked Apple	12-20m	Large	175m2	Native	Evergreen	
ABACEAE	Castanospermum	australe	Black Bean	15-18m	Large	175m2	Native	Evergreen	
IYRTACEAE	Corymbia	maculata	Spotted Gum	18-25m	Large	175m2	Native	Evergreen	
IYRTACEAE	Eucalyptus	microcorys	Tallowood	20-25m	Large	175m2	Native	Evergreen	
IORACEAE	Ficus	rubiginosa	Port Jackson Fig	15-20m	Large	175m2	Native	Evergreen	
AMAMELIDACEAE	Liquidambar	styraciflua	Liquidambar	15-22m	Large	175m2	Exotic	Deciduous	
LATANACEAE	Platanus	x acerifolia 'Bloodgood'	London Plane	18-25m	Large	175m2	Exotic	Deciduous	
LMACAEAE	Ulmus	parvifolia 'Todd'	Chinese Elm	10-12m	Large	175m2	Exotic	Deciduous	
CERACEAE	Acer	negundo 'Sensation'	Box Elder	8-12m	Medium	78m2	Exotic	Deciduous	
YRTACEAE	Acmena	smithii	Creek Lilly-Pilly	10-15m	Medium	78m2	Endemic	Evergreen	
APINDACEAE	Alectryon	tomentosus	Woolly Rambutan	10-15m	Medium	78m2	Native	Evergreen	
ALVACEAE	Brachychiton	acerifolius	Illawarra Flame Tree	15-20m	Medium	78m2	Native	Deciduous	
ALVACEAE	Brachychiton	discolor	Queensland Lacebark	15-20m	Medium	78m2	Native	Deciduous	
ABACEAE	Caesalpinia	ferrea	Leopardwood	10-15m	Medium	78m2	Exotic	Deciduous	
LMACAEAE	Celtis	australis	European Nettle Tree	10-15m	Medium	78m2	Exotic	Deciduous	
IYRTACEAE	Corymbia	eximia	Yellow Bloodwood	10-18m	Medium	78m2	Native	Evergreen	CoS STMP - Cope St
IYRTACEAE	Corymbia	gummifera	Red Bloodwood	10-18m	Medium	78m2	Native	Evergreen	
IYRTACEAE	Eucalyptus	botryoides	Bangalay	18-25m	Medium	78m2	Endemic	Evergreen	
IYRTACEAE	Eucalyptus	haemastoma	Scribbly Gum	10-15m	Medium	78m2	Endemic	Evergreen	
IYRTACEAE	Eucalyptus	punctata	Grey Gum	18-25m	Medium	78m2	Native	Evergreen	
	Eucalyptus	robusta	Swamp Mahogany	10-15m	Medium	78m2	Endemic	Evergreen	
IYRTACEAE	Eucalyptus	sideroxylon	Red Ironbark	18-25m	Medium	78m2	Native	Evergreen	
	Flindersia	australis	Crows Ash Red Ash	15-20m	Medium	78m2	Native	Evergreen	
	Fraxinus	pennsylvanica	Red Asn Maidenhair Tree	12-18m	Medium	78m2	Exotic	Deciduous	
AESALPINIACEAE	Gingko Gleditsia	biloba triacanthos 'Sunburst'	Honey Locust	12-18m 10-15m	Medium Medium	78m2 78m2	Exotic Exotic	Deciduous	
UPHORBIACEAE	Glochidion	ferdinandi	Cheese Tree	8-12m	Medium	78m2	Endemic	Deciduous	
APINDACEAE	Harpullia	pendula	Tulipwood	8-12m	Medium	78m2	Native	Evergreen Evergreen	
IGNONIACEAE	Jacaranda	mimosifolia	Jacaranda	10-15m	Medium	78m2	Exotic	Deciduous	CoS STMP - Phillip St
APINDACEAE	Koelreutaria	bipinnata	Chinese Rain Tree	10-15m	Medium	78m2	Exotic	Deciduous	COS STMP * Plinip St
IAGNOLIACEAE	Liriodendron	tulipifera	Tulip Tree	15-20m	Medium	78m2	Exotic	Deciduous	
IYRTACEAE	Lophostemon	confertus	Brush Box	20-25m	Medium	78m2	Native	Evergreen	CoS STMP-McEvoy,Raglan,George & Bota
IYRTACEAE	Melaleuca	leucadendra	Weeping Paperbark	15-18m	Medium	78m2	Native	Evergreen	
IYRTACEAE	Melaleuca	quinquinervia	Broad-Leaf Paperbark	18-20m	Medium	78m2	Endemic	Evergreen	
NACARDIACEAE	Pistacia	chinensis	Chinese Pistachio	7-12m	Medium	78m2	Exotic	Deciduous	
ALICACEAE	Populus	simonii	Simons Poplar	15-20m	Medium	78m2	Exotic	Deciduous	
OSACEAE	Pyrus	ussuriensis	Machurian Pear	8-12m	Medium	78m2	Exotic	Deciduous	
AGACEAE	Quercus	ilex	Holm Qak	12-15m	Medium	78m2	Exotic	Evergreen	
ABACEAE	Robinia	pseudoacacia 'Frisia'	Black Locust	10-12m	Medium	78m2	Exotic	Deciduous	CoS STMP - Pitt St & Botany Rd
UPHORBIACEAE	Sapium	sebiferum	Chinese Tallow Tree	10-12m	Medium	78m2	Exotic	Deciduous	
NACARDIACEAE	Schinus	areira	Peppercorn Tree	10-12m	Medium	78m2	Exotic	Evergreen	
IYRTACEAE	Syzygium	paniculatum	Brush Cherry	8-12m	Medium	78m2	Native	Evergreen	
IYRTACEAE	Waterhousea	floribunda 'Green Avenue'	Weeping Lilly Pilly	18-25m	Medium	78m2	Native	Evergreen	CoS STMP - John St. Wellington St. Mead
ILMACAEAE	Zelkova	serrata 'Green Vase'	Japanese Zelkova	10-12m	Medium	78m2	Exotic	Deciduous	
ABACEAE	Acacia	binervia	Coastal Myall	8-12m	Small	38m2	Endemic	Evergreen	
CERACEAE	Acer	buergeranum	Trident Maple	8-12m	Small	38m2	Exotic	Deciduous	
IYRTACEAE	Angophora	hispida	Dwarf Apple	5-7m	Small	38m2	Endemic	Evergreen	
IYRTACEAE	Backhousia	citriodora	Lemon-scented Myrtle	7-10m	Small	38m2	Native	Evergreen	
ROTEACEAE	Banksia	integrifolia	Coast Banksia	7-10m	Small	38m2	Endemic	Evergreen	
IYRTACEAE	Callistemon	salignus	Willow Bottlebrush	7-10m	Small	38m2	Native	Evergreen	
IYRTACEAE	Callistemon	viminalis cv.	Bottlebrush	7-10m	Small	38m2	Native	Evergreen	
APINDACEAE	Cupaniopsis	anacardioides	Tuckeroo	8-15m	Small	38m2	Endemic	Evergreen	CoS STMP - Cooper St
LAEOCARPACEAE	Elaeocarpus	eumundi	Eumundi Quondong	10-20m	Small	38m2	Native	Evergreen	
LAEOCARPACEAE	Elaeocarpus	reticulatus	Blue Berry Ash	8-12m	Small	38m2	Endemic	Evergreen	CoS STMP - Reeve St & Gibbson St
LEACEAE	Fraxinus	griffithii	Evergreen Ash	7-10m	Small	38m2	Exotic	Deciduous	
LEACEAE	Fraxinus	oxycarpa 'Raywood'	Claret Ash	10-15m	Small	38m2	Exotic	Deciduous	
HEACEAE	Gordonia	axillaris	Gordonia	5-8m	Small	38m2	Exotic	Evergreen	
ALVACEAE	Hibiscus	tiliaceous	Coast Cottonwood	8-10m	Small	38m2	Native	Evergreen	
APINDACEAE	Koelreutaria	paniculata	Golden Rain Tree	7-9m	Small	38m2	Exotic	Deciduous	
YTHRACEAE	Lagerstroemia	indica cv.	Crepe Myrtle	8-10m	Small	38m2	Exotic	Deciduous	
RECACEAE	Livistona	australis	Cabbage Tree Palm	15-20m	Small	38m2	Endemic	Evergreen	
AGNOLIACEAE	Magnolia	grandiflora 'Exmouth'	Bull-bay Magnolia	12-15m	Small	38m2	Exotic	Evergreen	
YRTACEAE	Melaleuca	styphelioides	Prickly Paperbark	8-12m	Small	38m2	Endemic	Evergreen	
RECACEAE	Phoenix	dactylifera	Date Palm	8-12m	Small	38m2	Exotic	Evergreen	
OSACEAE	Prunus	cerasifera 'Nigra'	Purple-leaf Cherry Plum	6-8m	Small	38m2	Exotic	Deciduous	
OSACEAE	Pyrus	calleryana 'Chanticleer'	Callery Pear	6-8m	Small	38m2	Exotic	Deciduous	
ROTEACEAE	Stenocarpus	sinuatus	Firewheel Tree	8-12m	Small	38m2	Native	Evergreen	
IYRTACEAE	Syzygium	leuhmannii	Riberry	8-12m	Small	38m2	Native	Evergreen	
IYRTACEAE	Tristaniopsis	laurina	Water Gum	7-10m	Small	38m2	Native	Evergreen	
YRTACEAE	Tristaniopsis	laurina 'Luscious'	Glossy-Leaved Water Gum	7-10m	Small	38m2	Native	Evergreen	
RECACEAE	Washingtonia	robusta	Mexican Fan Palm	20-25m	Small	38m2	Exotic	Evergreen	1

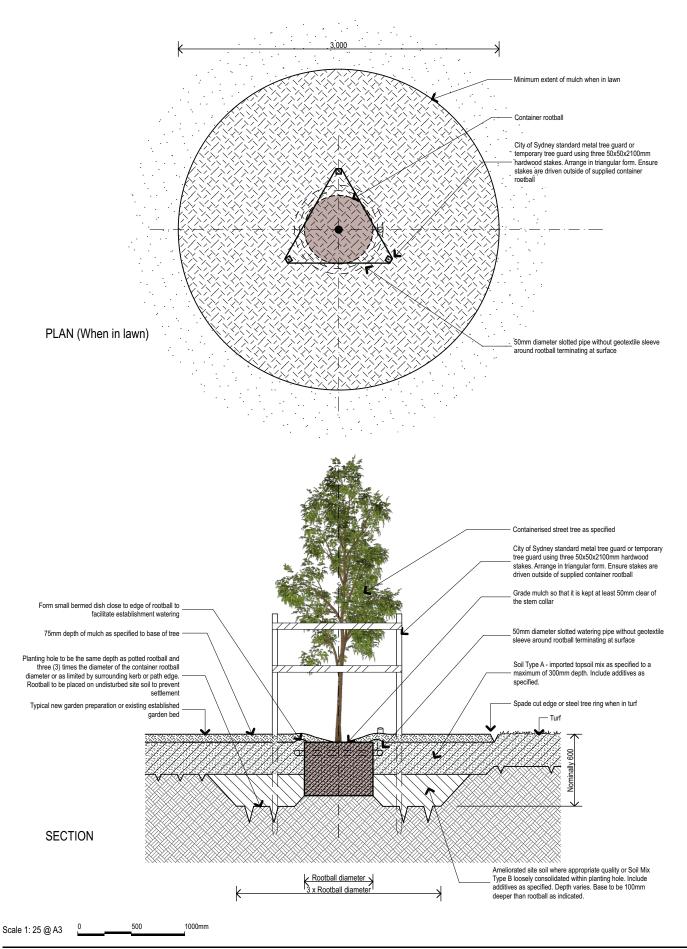

Waterloo South Precinct Planning Proposal | Urban Forest Study - 24/3/2020

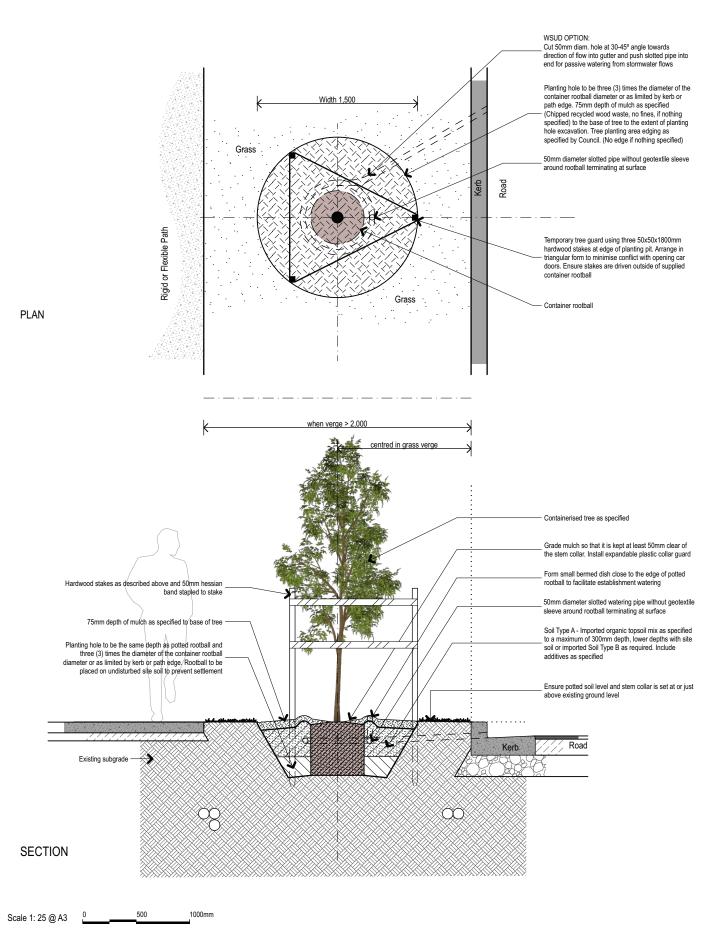

6.3 Plans of Proposed Trees to be Retained and Removed

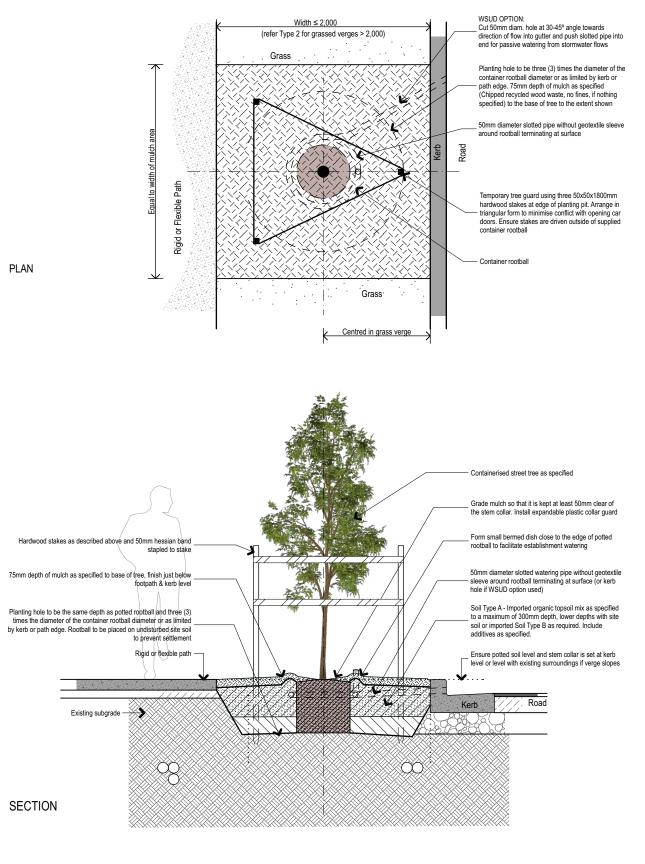






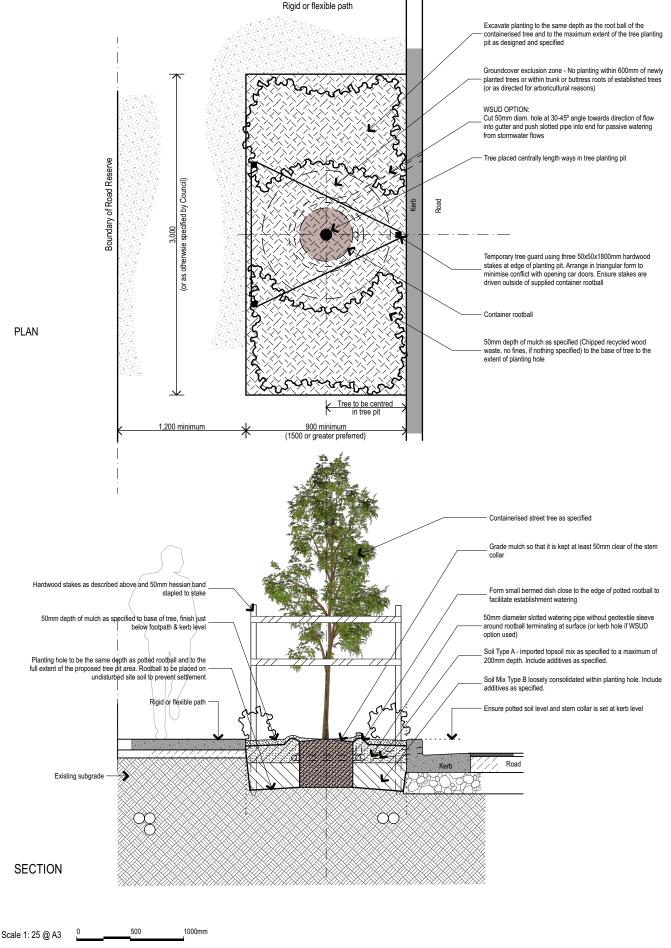


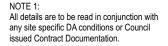

6.4 Typical Planting Details to be Adopted for the Project


The following pages are the currently unpublished but standard tree planting details for the CoS. They have been reproduced here with the permission of the CoS to assist and facilitate appropriate installation of public trees. These supersede the current planting details that are contained within the current CoS Street Tree Master Plan 2015.

These details are generic and standard details. They should be referred to as a guide to appropriate tree planting and proper resolution of elements related to street and public area tree planting. Detailed and site specific details will be expected to be produced during refinement and detailed design stages of the proposed new development. Future appointed designers and developers are encouraged to refer to these details for guidance on the minimum standards and general approaches that will expected.

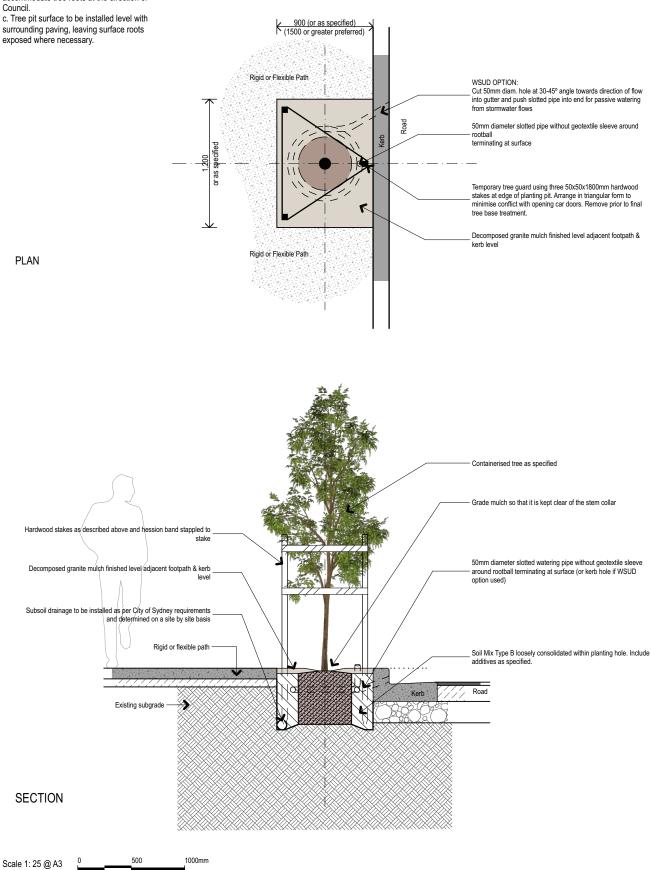
These details may be subsequently superseded by later revisions to policy, codes and plans that may be prepared by the CoS.

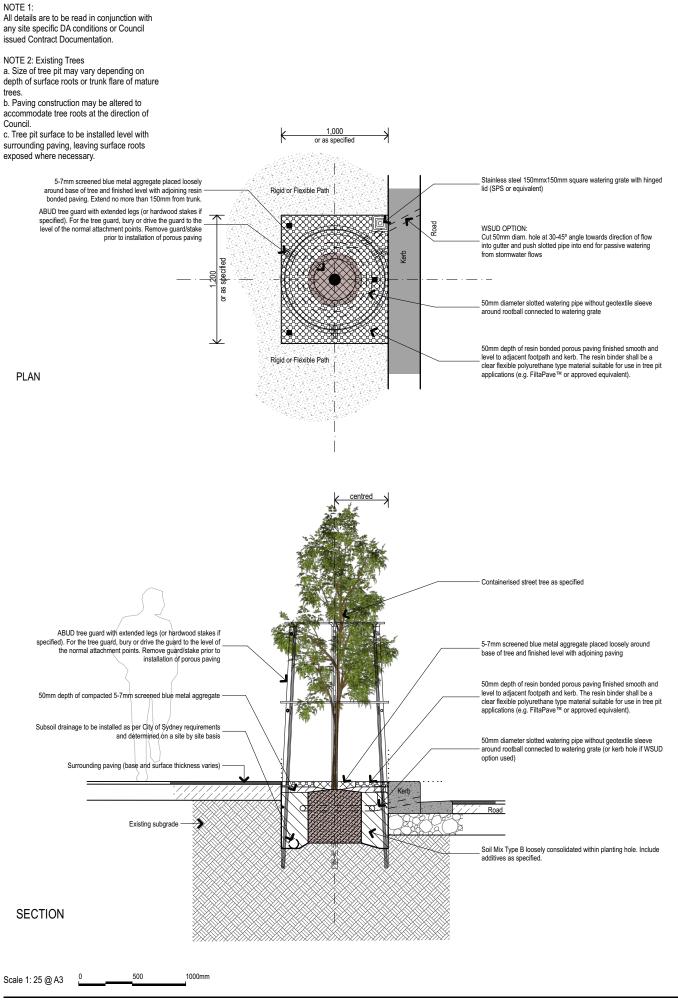


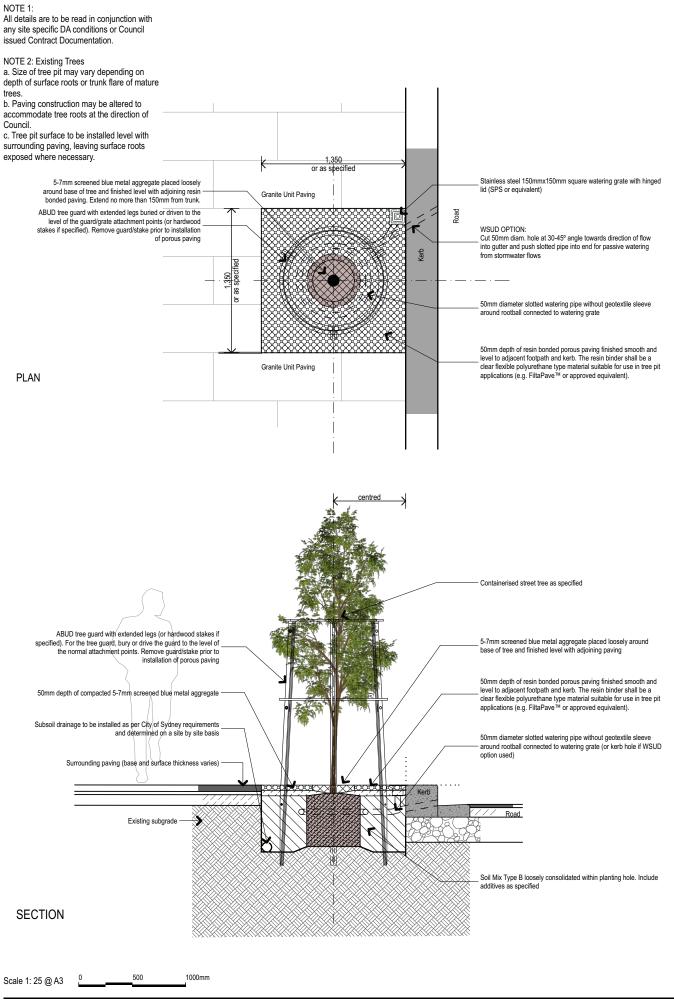


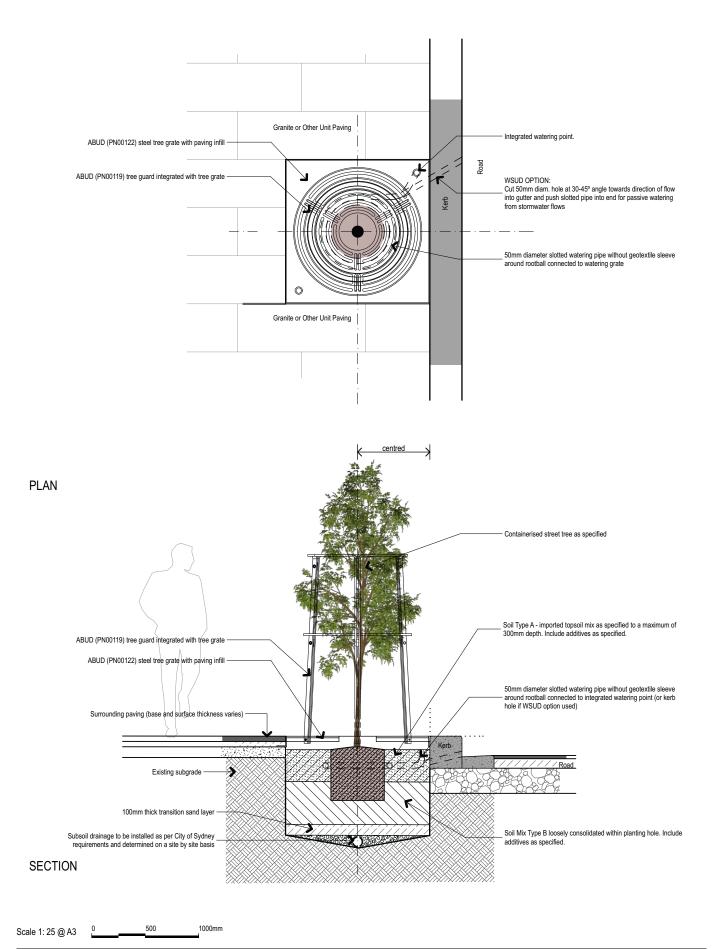
Scale 1: 25 @ A3 0 500 1000mm

NOTE 1: All details are to be read in conjunction with any site specific DA conditions or Council issued Contract Documentation.

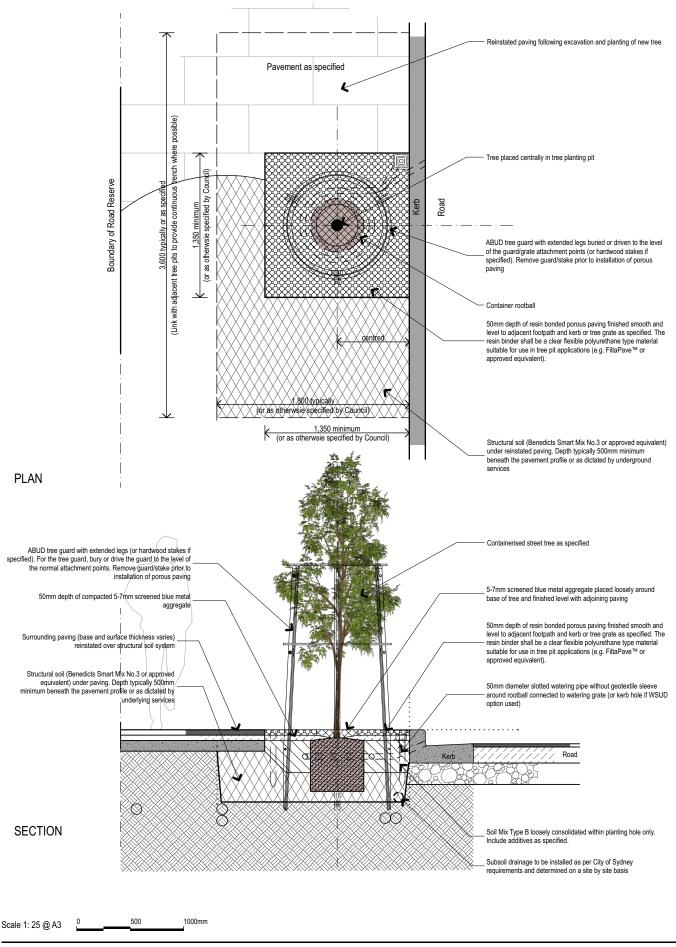


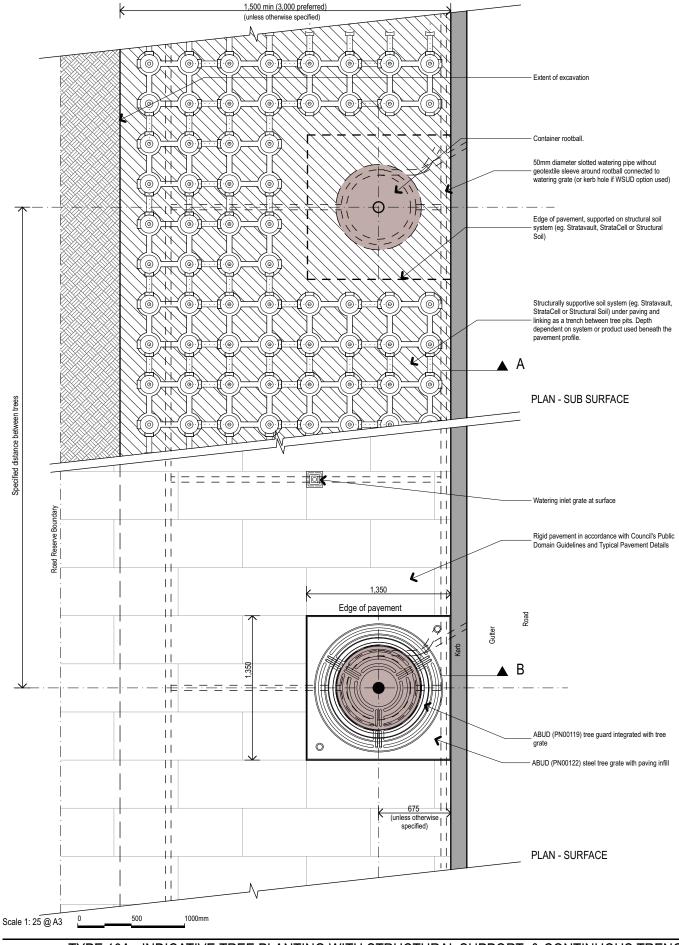

NOTE 2: Existing Trees

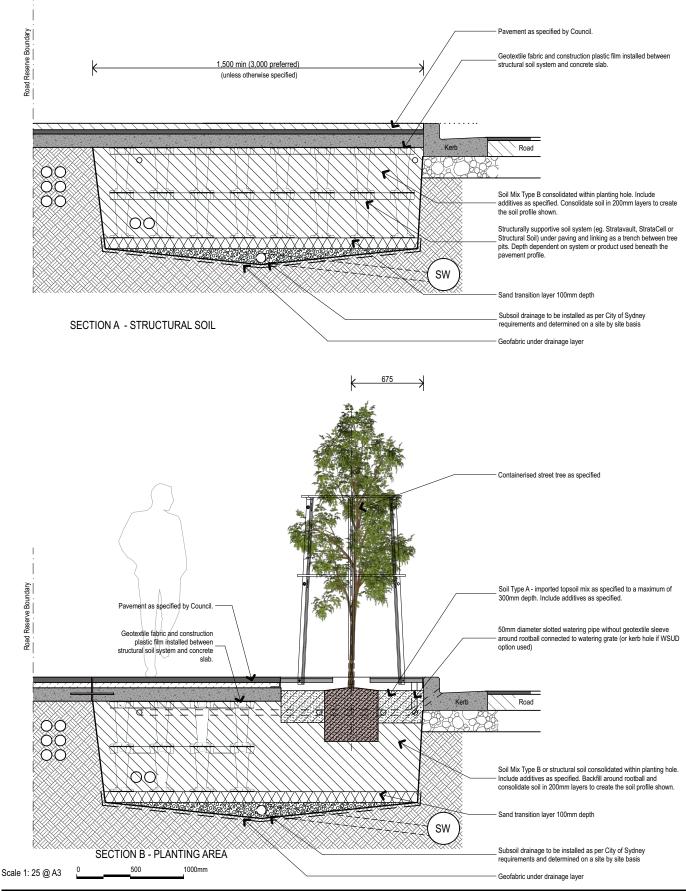

a. Size of tree pit may vary depending on depth of surface roots or trunk flare of mature trees


b. Paving construction may be altered to accommodate tree roots at the direction of Council.

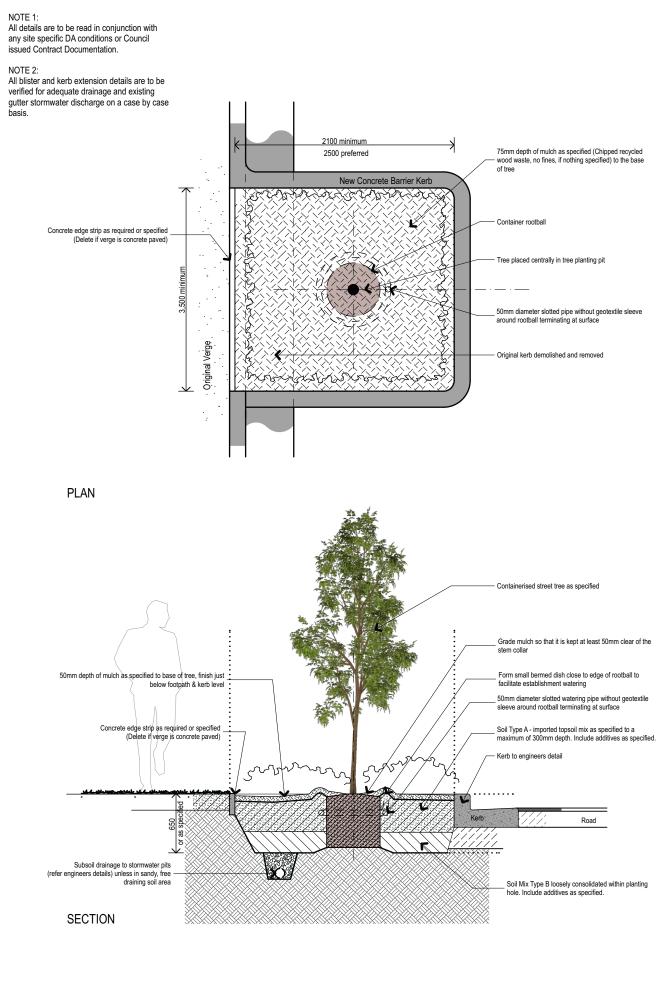
surrounding paving, leaving surface roots exposed where necessary.







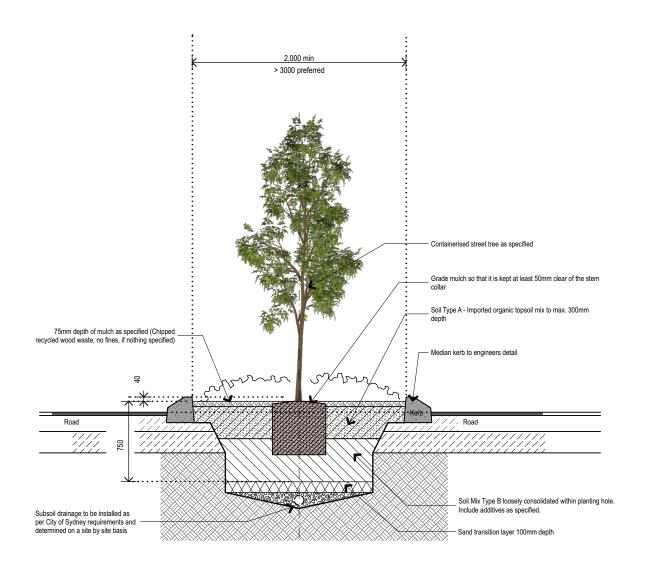
NOTE 1: All details are to be read in conjunction with any site specific DA conditions or Council issued Contract Documentation.



NOTE 1: All details are to be read in conjunction with any site specific DA conditions or Council issued Contract Documentation.

TYPE 10B - INDICATIVE TREE PLANTING WITH STRUCTURAL SUPPORT & CONTINUOUS TRENCH [SECTIONS]

Scale 1: 25 @ A3 0 500 1000mm


City of Sydney

NOTE 1:

All details are to be read in conjunction with any site specific DA conditions or Council issued Contract Documentation.

NOTE 2:

All median details are to be verified for adequate drainage and soil depths on a case by case basis.

